Advertisement

Helical Buckling Behaviors of the Nanowire/Substrate System

  • Youlong ChenEmail author
  • Yilun Liu
  • Xi Chen
Reference work entry

Abstract

When a nanowire is deposited on a compliant soft substrate or embedded in matrix, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a poly-dimethylsiloxne (PDMS) substrate is discussed. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed, and the helical buckling spacing and amplitude are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. When the debonding of SiNW from the surface of the substrate is considered, the buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the debonding density. For a nanowire embedded in matrix, the buckled profile is almost perfectly circular in the axial direction; with increasing compression, the buckling spacing decreases almost linearly, while the amplitude scales with the 1/2 power of the compressive strain; the transition strain from 2D mode to 3D helical mode decreases with the Young’s modulus of the wire and approaches to ~1.25% when the modulus is high enough, which is much smaller than nanowires on the surface of substrates. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nanostructures.

Keywords

Buckling mode Nanowire Soft substrate Helical mode In-plane mode Transition Embedded wire Continuum mechanics FEM Post-buckling behaviors Buckling wavelength Buckling amplitude 

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series 55. Tenth Printing. Engineering: 1076, Washington, DC, 1972)Google Scholar
  2. B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate – part I. J. Mech. Phys. Solids 56(7), 2401–2421 (2008)MathSciNetCrossRefGoogle Scholar
  3. C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)CrossRefGoogle Scholar
  4. B. Charlot, W. Sun, K. Yamashita, H. Fujita, H. Toshiyoshi, In-plane bistable nanowire for memory devices, in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008 (IEEE, 2008). http://ieeexplore.ieee.org/document/4752995/
  5. X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22), 5667–5680 (2010).CrossRefGoogle Scholar
  6. Z. Chen, B. Cotterell, W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 69(5), 597–603 (2002)CrossRefGoogle Scholar
  7. Y. Chen, Y. Liu, Y. Yan, Y. Zhu, X. Chen, Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate. J. Mech. Phys. Solids 95, 25–43 (2016)MathSciNetCrossRefGoogle Scholar
  8. G. Crawford, Flexible Flat Panel Displays (Wiley, Chichester, 2005)CrossRefGoogle Scholar
  9. Y. Duan, Y. Huang, Z. Yin, Competing buckling of micro/nanowires on compliant substrates. J. Phys. D. Appl. Phys. 48(4), 045302 (2015)CrossRefGoogle Scholar
  10. J.W. Durham 3rd, Y. Zhu, Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces 5(2), 256–261 (2013)CrossRefGoogle Scholar
  11. K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254(2), 306–315 (2002)CrossRefGoogle Scholar
  12. A. Goriely, R. Vandiver, M. Destrade, Nonlinear Euler buckling. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464(2099), 3003–3019 (2008)MathSciNetCrossRefGoogle Scholar
  13. H. Jiang, J. Zhang, Mechanics of microtubule buckling supported by cytoplasm. J. Appl. Mech. 75(6), 061019 (2008)CrossRefGoogle Scholar
  14. H. Jiang, D.Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. U. S. A. 104(40), 15607–15612 (2007)CrossRefGoogle Scholar
  15. S.J. Kalita, V. Somani, Al2TiO5–Al2O3–TiO2 nanocomposite: structure, mechanical property and bioactivity studies. Mater. Res. Bull. 45(12), 1803–1810 (2010)CrossRefGoogle Scholar
  16. D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105(48), 18675–18680 (2008)CrossRefGoogle Scholar
  17. H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, J.A. Rogers, A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008)CrossRefGoogle Scholar
  18. S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459–1467 (2005)CrossRefGoogle Scholar
  19. T. Li, A mechanics model of microtubule buckling in living cells. J. Biomech. 41(8), 1722–1729 (2008)CrossRefGoogle Scholar
  20. H. Mei, C.M. Landis, R. Huang, Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 43(11), 627–642 (2011)CrossRefGoogle Scholar
  21. S.G. O’Keeffe, D.E. Moulton, S.L. Waters, A. Goriely, Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. Int. J. Non Linear Mech. 56, 94–104 (2013)CrossRefGoogle Scholar
  22. W.A. Oldfather, C.A. Ellis, D.M. Brown, Leonhard Euler’s elastic curves. Isis 20(1), 72–160 (1933)CrossRefGoogle Scholar
  23. X.H. Peng, A. Alizadeh, S.K. Kumar, S.K. Nayak, Ab initio study of size and strain effects on the electronic properties of Si nanowires. Int. J. Appl. Mech. 1(3), 483–499 (2009)CrossRefGoogle Scholar
  24. Q. Qin, Y. Zhu, Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5(9), 7404–7410 (2011)CrossRefGoogle Scholar
  25. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRefGoogle Scholar
  26. S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9(9), 3214–3219 (2009)CrossRefGoogle Scholar
  27. R.N. Sajjad, K. Alam, Electronic properties of a strained 100 silicon nanowire. J. Appl. Phys. 105(4), 044307 (2009)CrossRefGoogle Scholar
  28. V. Slesarenko, S. Rudykh, Microscopic and macroscopic instabilities in hyperelastic fiber composites. J. Mech. Phys. Solids 99, 471–482 (2016)MathSciNetCrossRefGoogle Scholar
  29. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004)CrossRefGoogle Scholar
  30. J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang, H.C. Ko, D.H. Kim, M.P. Stoykovich, J.A. Rogers, Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105(12), 123516 (2009)CrossRefGoogle Scholar
  31. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRefGoogle Scholar
  32. T. Su, J. Liu, D. Terwagne, P.M. Reis, K. Bertoldi, Buckling of an elastic rod embedded on an elastomeric matrix: planar vs. non-planar configurations. Soft Matter 10(33), 6294–6302 (2014)CrossRefGoogle Scholar
  33. S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (Courier Corporation, North Chelmsford, 2009)Google Scholar
  34. S.P. Timoshenko, J.N. Goodier, H.N. Abramson, Theory of elasticity (3rd ed.) J. Appl. Mech. 37(3), 888 (1970)CrossRefGoogle Scholar
  35. Y. Wang, J. Song, J. Xiao, Surface effects on in-plane buckling of nanowires on elastomeric substrates. J. Phys. D. Appl. Phys. 46(12), 125309 (2013)CrossRefGoogle Scholar
  36. E.A. Wilder, S. Guo, S. Lin-Gibson, M.J. Fasolka, C.M. Stafford, Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 39(12), 4138–4143 (2006)CrossRefGoogle Scholar
  37. J. Xiao, H. Jiang, D.Y. Khang, J. Wu, Y. Huang, J.A. Rogers, Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104(3), 033543 (2008)CrossRefGoogle Scholar
  38. J. Xiao, S.Y. Ryu, Y. Huang, K.C. Hwang, U. Paik, J.A. Rogers, Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21(8), 85708 (2010)CrossRefGoogle Scholar
  39. F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5(1), 672–678 (2011)CrossRefGoogle Scholar
  40. S. Xu, Z. Yan, K.I. Jang, W. Huang, H.R. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D.Q. Xiao, G.Y. Zhou, J. Lee, H.U. Chung, H.Y. Cheng, W. Ren, A. Banks, X.L. Li, U. Paik, R.G. Nuzzo, Y.G. Huang, Y.H. Zhang, J.A. Rogers, Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015)CrossRefGoogle Scholar
  41. J. Yin, X. Chen, Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J. Phys. D. Appl. Phys. 43(11), 115402 (2010)CrossRefGoogle Scholar
  42. E. Zeeman, Euler buckling, in Structural Stability, the Theory of Catastrophes, and Applications in the Sciences (Springer, 1976), pp. 373–395. http://www.springer.com/la/book/9783540077916
  43. Y. Zhao, J. Li, Y.P. Cao, X.Q. Feng, Buckling of an elastic fiber with finite length in a soft matrix. Soft Matter 12(7), 2086–2094 (2016)CrossRefGoogle Scholar
  44. C. Zhou, S. Bette, U. Schnakenberg, Flexible and stretchable gold microstructures on extra soft poly(dimethylsiloxane) substrates. Adv. Mater. 27(42), 6664–6669 (2015)CrossRefGoogle Scholar
  45. Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace, Xi’an Jiaotong UniversityXi’anChina
  2. 2.International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace, Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Earth and Environmental EngineeringColumbia Nanomechanics Research Center, Columbia UniversityNew YorkUSA

Personalised recommendations