Advertisement

Molecular Dynamics-Decorated Finite Element Method (MDeFEM): Application to the Gating Mechanism of Mechanosensitive Channels

  • Liangliang Zhu
  • Qiang Cui
  • Yilun Liu
  • Yuan Yan
  • Hang Xiao
  • Xi Chen
Reference work entry

Abstract

Many fundamentally important biological processes rely on the mechanical responses of membrane proteins and their assemblies in the membrane environment, which are multiscale in nature and represent a significant challenge in modeling and simulation. For example, in mechanotransduction, mechanical stimuli can be introduced through macroscopic-scale contacts, which are transduced to mesoscopic-scale (micron) distances and can eventually lead to microscopic-scale (nanometer) conformational changes in membrane-bound protein or protein complexes. This is a fascinating process that spans a large range of length scales and time scales. The involvement of membrane environment and critical issues such as cooperativity calls for the need for an efficient multi-scale computational approach. The goal of the present research is to develop a hierarchical approach to study the mechanical behaviors of membrane proteins with a special emphasis on the gating mechanisms of mechanosensitive (MS) channels. This requires the formulation of modeling and numerical methods that can effectively bridge the disparate length and time scales. A top-down approach is proposed to achieve this by effectively treating biomolecules and their assemblies as integrated structures, in which the most important components of the biomolecule (e.g., MS channel) are modeled as continuum objects, yet their mechanical/physical properties, as well as their interactions, are derived from atomistic simulations. Molecular dynamics (MD) simulations at the nanoscale are used to obtain information on the physical properties and interactions among protein, lipid membrane, and solvent molecules, as well as relevant energetic and temporal characteristics. Effective continuum models are developed to incorporate these atomistic features, and the conformational response of macromolecule(s) to external mechanical perturbations is simulated using finite element (FEM) analyses with in situ mechanochemical coupling. Results from the continuum mechanics analysis provide further insights into the gating transition of MS channels at structural and physical levels, and specific predictions are proposed for further experimental investigations. It is anticipated that the hierarchical framework is uniquely suited for the analysis of many biomolecules and their assemblies under external mechanical stimuli.

Keywords

Mechanotransduction Multi-scale simulation Mechanosensitive channels Gating mechanism Continuum mechanics Continuum solvation 

References

  1. ABAQUS 6.11 User’s Manual. ABAQUS Inc., Providence, RI, (2011)Google Scholar
  2. B. Ajouz, C. Berrier, M. Besnard, B. Martinac, A. Ghazi, J. Biol. Chem. 275, 1015 (2000)CrossRefGoogle Scholar
  3. B. Akitake, A. Anishkin, S. Sukharev, J. Gen. Physiol. 125, 143 (2005)CrossRefGoogle Scholar
  4. B. Akitake, A. Anishkin, N. Liu, S. Sukharev, Nat. Struct. Mol. Biol. 14, 1141 (2007)CrossRefGoogle Scholar
  5. A. Anishkin, C. Kung, Curr. Opin. Neurobiol. 15, 397 (2005)CrossRefGoogle Scholar
  6. A. Anishkin, S. Sukharev, Biophys. J. 86, 2883 (2004)CrossRefGoogle Scholar
  7. A. Anishkin, S. Sukharev, Channels (Austin) 11, 173 (2017)CrossRefGoogle Scholar
  8. A. Anishkin, C.S. Chiang, S. Sukharev, J. Gen. Physiol. 125, 155 (2005)CrossRefGoogle Scholar
  9. A. Anishkin, B. Akitake, S. Sukharev, Biophys. J. 94, 1252 (2008a)CrossRefGoogle Scholar
  10. A. Anishkin, K. Kamaraju, S. Sukharev, J. Gen. Physiol. 132, 67 (2008b)CrossRefGoogle Scholar
  11. A. Anishkin, B. Akitake, K. Kamaraju, C. Chiang, S. Sukharev, J. Phys. Condens. Matter 22, 454120 (2010)CrossRefGoogle Scholar
  12. D. Argudo, N.P. Bethel, F.V. Marcoline, M. Grabe, Biochim. Biophys. Acta Biomembr. 1858, 1619 (2016)CrossRefGoogle Scholar
  13. N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Proc. Natl. Acad. Sci. U. S. A. 98, 10037 (2001)CrossRefGoogle Scholar
  14. R.B. Bass, P. Strop, M. Barclay, D.C. Rees, Science 298, 1582 (2002)CrossRefGoogle Scholar
  15. N. Bavi, O. Bavi, M. Vossoughi, R. Naghdabadi, A.P. Hill, B. Martinac, Y. Jamali, Channels (Austin) 11, 209, (2017)Google Scholar
  16. N. Bavi et al., Nat. Commun. 7, 11984 (2016b)CrossRefGoogle Scholar
  17. O. Beckstein, M.S. Sansom, Phys. Biol. 1, 42 (2004)CrossRefGoogle Scholar
  18. O. Beckstein, P.C. Biggin, M.S.P. Sansom, J. Phys. Chem. B 105, 12902 (2001)CrossRefGoogle Scholar
  19. V. Belyy, A. Anishkin, K. Kamaraju, N. Liu, S. Sukharev, Nat. Struct. Mol. Biol. 17, 451 (2010)CrossRefGoogle Scholar
  20. C. Berrier, M. Besnard, B. Ajouz, A. Coulombe, A. Ghazi, J Membr. Biol. 151, 175 (1996)CrossRefGoogle Scholar
  21. R.B. Best, X. Zhu, J. Shim, P.E. Lopes, J. Mittal, M. Feig, A.D. Mackerell Jr., J. Chem. Theory Comput. 8, 3257 (2012)CrossRefGoogle Scholar
  22. M. Betanzos, C.S. Chiang, H.R. Guy, S. Sukharev, Nat. Struct. Biol. 9, 704 (2002)CrossRefGoogle Scholar
  23. H. Binder, K. Gawrisch, J. Phys. Chem. B 105, 12378 (2001)CrossRefGoogle Scholar
  24. P. Blount, M.J. Schroeder, C. Kung, J. Biol. Chem. 272, 32150 (1997)CrossRefGoogle Scholar
  25. I.R. Booth, M.D. Edwards, S. Black, U. Schumann, S. Miller, Nat. Rev. Microbiol. 5, 431 (2007)CrossRefGoogle Scholar
  26. K. Borngen, A.R. Battle, N. Moker, S. Morbach, K. Marin, B. Martinac, R. Kramer, Biochim. Biophys. Acta 1798, 2141 (2010)CrossRefGoogle Scholar
  27. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)CrossRefGoogle Scholar
  28. G.X. Cao, X. Chen, J. Mater. Res. 21, 1048 (2006)CrossRefGoogle Scholar
  29. G. Cao, X. Chen, J. Mater. Res. 21, 1048 (2011)CrossRefGoogle Scholar
  30. E. Chacon, P. Tarazona, F. Bresme, J. Chem. Phys. 143, 034706 (2015)CrossRefGoogle Scholar
  31. G. Chang, R.H. Spencer, A.T. Lee, M.T. Barclay, D.C. Rees, Science 282, 2220 (1998)CrossRefGoogle Scholar
  32. X. Chen, Y. Tang, G. Cao, Proc. Inst. Mech. Eng. Part N 219, 73 (2006)Google Scholar
  33. X. Chen, Q. Cui, Y. Tang, J. Yoo, A. Yethiraj, Biophys. J. 95, 563 (2008)CrossRefGoogle Scholar
  34. B. Chen, B. Ji, H. Gao, Annu. Rev. Biophys. 44, 1 (2015)CrossRefGoogle Scholar
  35. C.S. Chiang, A. Anishkin, S. Sukharev, Biophys. J. 86, 2846 (2004)CrossRefGoogle Scholar
  36. D.E. Clapham, Nature 426, 517 (2003)CrossRefGoogle Scholar
  37. B. Corry, A.C. Hurst, P. Pal, T. Nomura, P. Rigby, B. Martinac, J. Gen. Physiol. 136, 483 (2010)CrossRefGoogle Scholar
  38. C. Cui, D.O. Smith, J. Adler, J. Membr. Biol. 144, 31 (1995)CrossRefGoogle Scholar
  39. M.E. Davis, J.A. Mccammon, Chem. Rev. 90, 509 (1990)CrossRefGoogle Scholar
  40. Y. Deng, M. Sun, J.W. Shaevitz, Phys. Rev. Lett. 107, 158101 (2011)CrossRefGoogle Scholar
  41. E. Deplazes, M. Louhivuori, D. Jayatilaka, S.J. Marrink, B. Corry, PLoS Comput. Biol. 8, e1002683 (2012)CrossRefGoogle Scholar
  42. L. Deseri, P. Pollaci, M. Zingales, K. Dayal, J. Mech. Behav. Biomed. Mater. 58, 11 (2016)CrossRefGoogle Scholar
  43. A. Dhaka, V. Viswanath, A. Patapoutian, Annu. Rev. Neurosci. 29, 135 (2006)CrossRefGoogle Scholar
  44. R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu, D.E. Shaw, Annu. Rev. Biophys. 41, 429 (2012)CrossRefGoogle Scholar
  45. M.D. Edwards, W. Bartlett, I.R. Booth, Biophys. J. 94, 3003 (2008)CrossRefGoogle Scholar
  46. R. Gamini, M. Sotomayor, C. Chipot, K. Schulten, Biophys. J. 101, 80 (2011)CrossRefGoogle Scholar
  47. M.A. Geeves, K.C. Holmes, Annu. Rev. Biochem. 68, 687 (1999)CrossRefGoogle Scholar
  48. M.A. Geeves, K.C. Holmes, Adv. Protein Chem. 71, 161 (2005)CrossRefGoogle Scholar
  49. J. Gullingsrud, K. Schulten, Biophys. J. 85, 2087 (2003)CrossRefGoogle Scholar
  50. J. Gullingsrud, K. Schulten, Biophys. J. 86, 3496 (2004)CrossRefGoogle Scholar
  51. O.P. Hamill, B. Martinac, Physiol. Rev. 81, 685 (2001)CrossRefGoogle Scholar
  52. E.S. Haswell, R. Phillips, D.C. Rees, Structure 19, 1356 (2011)CrossRefGoogle Scholar
  53. K. Hayakawa, H. Tatsumi, M. Sokabe, J. Cell Sci. 121, 496 (2008)CrossRefGoogle Scholar
  54. P.S. Heckbert, M. Garland, Comp Geom. Theor. Appl. 14, 49 (1999)CrossRefGoogle Scholar
  55. B. Honig, A. Nicholls, Science 268, 1144 (1995)CrossRefGoogle Scholar
  56. W. Im, D. Beglov, B. Roux, Comput. Phys. Commun. 111, 59 (1998)CrossRefGoogle Scholar
  57. W. Im, M. Feig, C.L. Brooks, Biophys. J. 85, 2900 (2003)CrossRefGoogle Scholar
  58. D.E. Ingber, FASEB J. 20, 811 (2006)CrossRefGoogle Scholar
  59. H.I. Ingolfsson, C.A. Lopez, J.J. Uusitalo, D.H. de Jong, S.M. Gopal, X. Periole, S.J. Marrink, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225 (2014)CrossRefGoogle Scholar
  60. I. Iscla, P. Blount, Biophys. J. 103, 169 (2012)CrossRefGoogle Scholar
  61. I. Iscla, R. Wray, P. Blount, Biophys. J. 95, 2283 (2008)CrossRefGoogle Scholar
  62. J. Jeon, G.A. Voth, Biophys. J. 94, 3497 (2008)CrossRefGoogle Scholar
  63. K. Kamaraju, V. Belyy, I. Rowe, A. Anishkin, S. Sukharev, J. Gen. Physiol. 138, 49 (2011)CrossRefGoogle Scholar
  64. M. Karplus, J. Kuriyan, Proc. Natl. Acad. Sci. U. S. A. 102, 6679 (2005)CrossRefGoogle Scholar
  65. J.L. Klepeis, K. Lindorff-Larsen, R.O. Dror, D.E. Shaw, Curr. Opin. Struct. Biol. 19, 120 (2009)CrossRefGoogle Scholar
  66. A. Kloda, B. Martinac, EMBO J. 20, 1888 (2001)CrossRefGoogle Scholar
  67. P. Koprowski, A. Kubalski, J. Membr. Biol. 164, 253 (1998)CrossRefGoogle Scholar
  68. P. Koprowski, W. Grajkowski, E.Y. Isacoff, A. Kubalski, J. Biol. Chem. 286, 877 (2011)CrossRefGoogle Scholar
  69. O. Krishtal, Trends Neurosci. 26, 477 (2003)CrossRefGoogle Scholar
  70. J.Y. Lai, Y.S. Poon, J.T. Kaiser, D.C. Rees, Protein science: A publication of the protein. Society 22, 502 (2013)Google Scholar
  71. G. Levin, P. Blount, Biophys. J. 86, 2862 (2004)CrossRefGoogle Scholar
  72. N. Levina, S. Totemeyer, N.R. Stokes, P. Louis, M.A. Jones, I.R. Booth, EMBO J. 18, 1730 (1999)CrossRefGoogle Scholar
  73. M. Louhivuori, H.J. Risselada, E. van der Giessen, S.J. Marrink, Proc. Natl. Acad. Sci. U. S. A. 107, 19856 (2010)CrossRefGoogle Scholar
  74. L. Ma, A. Yethiraj, X. Chen, Q. Cui, Biophys. J. 96, 3543 (2009)CrossRefGoogle Scholar
  75. H. Machiyama, H. Tatsumi, M. Sokabe, Biophys. J. 97, 1048 (2009)CrossRefGoogle Scholar
  76. H.R. Malcolm, Y.Y. Heo, D.E. Elmore, J.A. Maurer, Biophys. J. 101, 345 (2011)CrossRefGoogle Scholar
  77. V.S. Markin, F. Sachs, Phys. Biol. 1, 110 (2004)CrossRefGoogle Scholar
  78. S.J. Marrink, D.P. Tieleman, Chem. Soc. Rev. 42, 6801 (2013)CrossRefGoogle Scholar
  79. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007)CrossRefGoogle Scholar
  80. B. Martinac, J. Cell Sci. 117, 2449 (2004)CrossRefGoogle Scholar
  81. B. Martinac, A. Kloda, Prog. Biophys. Mol. Biol. 82, 11 (2003)CrossRefGoogle Scholar
  82. B. Martinac, A. Kloda, Comprehensive Biophysics (Elsevier, Amsterdam, 2012), p. 108CrossRefGoogle Scholar
  83. B. Martinac, M. Buechner, A.H. Delcour, J. Adler, C. Kung, Proc. Natl. Acad. Sci. U. S. A. 84, 2297 (1987)CrossRefGoogle Scholar
  84. B. Martinac et al., Antioxid. Redox Signal. 20, 952 (2014)CrossRefGoogle Scholar
  85. M. Masetti, C. Berti, R. Ocello, G.P. Di Martino, M. Recanatini, C. Fiegna, A. Cavalli, J. Chem. Theory Comput. 12, 5681 (2016)CrossRefGoogle Scholar
  86. S. Miller, W. Bartlett, S. Chandrasekaran, S. Simpson, M. Edwards, I.R. Booth, EMBO J. 22, 36 (2003)CrossRefGoogle Scholar
  87. P. Moe, P. Blount, Biochemistry 44, 12239 (2005)CrossRefGoogle Scholar
  88. L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, J. Chem. Theory Comput. 4, 819 (2008)CrossRefGoogle Scholar
  89. T. Nomura, M. Sokabe, K. Yoshimura, Biophys. J. 91, 2874 (2006)CrossRefGoogle Scholar
  90. T. Nomura, M. Sokabe, K. Yoshimura, Biophys. J. 94, 1638 (2008)CrossRefGoogle Scholar
  91. T. Nomura, M. Sokabe, K. Yoshimura, BioMed Res. Int. 2016, 2401657 (2016)CrossRefGoogle Scholar
  92. A. Pantano, M.C. Boyce, D.M. Parks, Phys. Rev. Lett. 91, 145504 (2003)CrossRefGoogle Scholar
  93. E. Perozo, D.M. Cortes, P. Sompornpisut, A. Kloda, B. Martinac, Nature 418, 942 (2002a)CrossRefGoogle Scholar
  94. E. Perozo, A. Kloda, D.M. Cortes, B. Martinac, Nat. Struct. Biol. 9, 696 (2002b)CrossRefGoogle Scholar
  95. E. Petrov, D. Palanivelu, M. Constantine, P.R. Rohde, C.D. Cox, T. Nomura, D.L. Minor Jr., B. Martinac, Biophys. J. 104, 1426 (2013)CrossRefGoogle Scholar
  96. R. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 459, 379 (2009)CrossRefGoogle Scholar
  97. C. Pliotas, J.H. Naismith, Curr. Opin. Struct. Biol. 45, 59 (2016)CrossRefGoogle Scholar
  98. C. Pliotas et al., Proc. Natl. Acad. Sci. U. S. A. 109, E2675 (2012)CrossRefGoogle Scholar
  99. C. Pliotas et al., Nat. Struct. Mol. Biol. 22, 991 (2015)CrossRefGoogle Scholar
  100. A.M. Powl, J.M. East, A.G. Lee, Biochemistry 42, 14306 (2003)CrossRefGoogle Scholar
  101. A.M. Powl, J.M. East, A.G. Lee, Biochemistry 44, 5873 (2005a)CrossRefGoogle Scholar
  102. A.M. Powl, J.N. Wright, J.M. East, A.G. Lee, Biochemistry 44, 5713 (2005b)CrossRefGoogle Scholar
  103. A.M. Powl, J.M. East, A.G. Lee, Biochemistry 47, 12175 (2008)CrossRefGoogle Scholar
  104. M. Praprotnik, L.D. Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)CrossRefGoogle Scholar
  105. B.L. Pruitt, A.R. Dunn, W.I. Weis, W.J. Nelson, PLoS Biol. 12, e1001996 (2014)CrossRefGoogle Scholar
  106. I. Rowe, A. Anishkin, K. Kamaraju, K. Yoshimura, S. Sukharev, J. Gen. Physiol. 143, 543 (2014)CrossRefGoogle Scholar
  107. H. Sackin, Annu. Rev. Physiol. 57, 333 (1995)CrossRefGoogle Scholar
  108. Y. Saimi, B. Martinac, A.H. Delcour, P.V. Minorsky, M.C. Gustin, M.R. Culbertson, J. Adler, C. Kung, Methods Enzymol. 207, 681 (1992)CrossRefGoogle Scholar
  109. M.F. Sanner, A.J. Olson, J.C. Spehner, Biopolymers 38, 305 (1996)CrossRefGoogle Scholar
  110. M.G. Saunders, G.A. Voth, Curr. Opin. Struct. Biol. 22, 144 (2012)CrossRefGoogle Scholar
  111. Y. Sawada, M. Murase, M. Sokabe, Channels (Austin) 6, 317 (2012)CrossRefGoogle Scholar
  112. F. Scarpa, S. Adhikari, A.J. Gil, C. Remillat, Nanotechnology 21, 125702 (2010)CrossRefGoogle Scholar
  113. U. Schumann, M.D. Edwards, C. Li, I.R. Booth, FEBS Lett. 572, 233 (2004)CrossRefGoogle Scholar
  114. Q. Shi, S. Izvekov, G.A. Voth, J. Phys. Chem. B 110, 15045 (2006)CrossRefGoogle Scholar
  115. W. Shinoda, R. DeVane, M.L. Klein, Curr. Opin. Struct. Biol. 22, 175 (2012)CrossRefGoogle Scholar
  116. C.D. Snow, E.J. Sorin, Y.M. Rhee, V.S. Pande, Annu. Rev. Biophys. Biomol. Struct. 34, 43 (2005)CrossRefGoogle Scholar
  117. M. Sotomayor, K. Schulten, Biophys. J. 87, 3050 (2004)CrossRefGoogle Scholar
  118. M. Sotomayor, T.A.v.d. Straaten, U. Ravaioli, K. Schulten, Biophys. J. 90, 3496 (2006)CrossRefGoogle Scholar
  119. S.A. Spronk, D.E. Elmore, D.A. Dougherty, Biophys. J. 90, 3555 (2006)CrossRefGoogle Scholar
  120. S. Steinbacher, R. Bass, P. Strop, D.C. Rees, Mechanosens. Ion Channels Part A 58, 1 (2007)CrossRefGoogle Scholar
  121. S. Sukharev, Biophys. J. 83, 290 (2002)CrossRefGoogle Scholar
  122. S. Sukharev, A. Anishkin, Trends Neurosci. 27, 345 (2004)CrossRefGoogle Scholar
  123. S. Sukharev, D.P. Corey, Sci. Signal. 2004, re4 (2004)CrossRefGoogle Scholar
  124. S.I. Sukharev, P. Blount, B. Martinac, C. Kung, Annu. Rev. Physiol. 59, 633 (1997)CrossRefGoogle Scholar
  125. S.I. Sukharev, W.J. Sigurdson, C. Kung, F. Sachs, J. Gen. Physiol. 113, 525 (1999)CrossRefGoogle Scholar
  126. S. Sukharev, M. Betanzos, C.S. Chiang, H.R. Guy, Nature 409, 720 (2001a)CrossRefGoogle Scholar
  127. S. Sukharev, S.R. Durell, H.R. Guy, Biophys. J. 81, 917 (2001b)CrossRefGoogle Scholar
  128. H. Sun, D.P. Li, S.R. Chen, W.N. Hittelman, H.L. Pan, J. Pharmacol. Exp. Ther. 331, 851 (2009)CrossRefGoogle Scholar
  129. Y. Tang, G. Cao, X. Chen, J. Yoo, A. Yethiraj, Q. Cui, Biophys. J. 91, 1248 (2006)CrossRefGoogle Scholar
  130. Y. Tang, J. Yoo, A. Yethiraj, Q. Cui, X. Chen, Biophys. J. 95, 581 (2008)CrossRefGoogle Scholar
  131. A. Torres-Sánchez, J.M. Vanegas, M. Arroyo, Phys. Rev. Lett. 114, 258102 (2015)CrossRefGoogle Scholar
  132. I.J. Tsai, Z.W. Liu, J. Rayment, C. Norman, A. McKinley, B. Martinac, Eur. Biophys. J. 34, 403 (2005)CrossRefGoogle Scholar
  133. K.I. Tserpes, P. Papanikos, Compos. Struct. 91, 131 (2009)CrossRefGoogle Scholar
  134. M.S. Turner, P. Sens, Phys. Rev. Lett. 93, 118103 (2004)CrossRefGoogle Scholar
  135. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  136. J.M. Vanegas, M. Arroyo, PLoS One 9, e113947 (2014)CrossRefGoogle Scholar
  137. J.M. Vanegas, A. Torres-Sánchez, M. Arroyo, J. Chem. Theory Comput. 10, 691 (2014)CrossRefGoogle Scholar
  138. V. Vasquez, Biophys. J. 104, 1391 (2013)CrossRefGoogle Scholar
  139. V. Vasquez, M. Sotomayor, J. Cordero-Morales, K. Schulten, E. Perozo, Science 321, 1210 (2008a)CrossRefGoogle Scholar
  140. V. Vasquez, M. Sotomayor, D.M. Cortes, B. Roux, K. Schulten, E. Perozo, J. Mol. Biol. 378, 55 (2008b)CrossRefGoogle Scholar
  141. R.M. Venable, F.L. Brown, R.W. Pastor, Chem. Phys. Lipids 192, 60 (2015)CrossRefGoogle Scholar
  142. T. Vora, B. Corry, S.H. Chung, Biochim. Biophys. Acta 1758, 730 (2006)CrossRefGoogle Scholar
  143. J.A. Wagoner, N.A. Baker, Proc. Natl. Acad. Sci. 103, 8331 (2006)CrossRefGoogle Scholar
  144. H.C. Wang, B.P. Thampatty, Biomech. Model. Mechanobiol. 5, 1 (2006)CrossRefGoogle Scholar
  145. W. Wang, S.S. Black, M.D. Edwards, S. Miller, E.L. Morrison, W. Bartlett, C. Dong, J.H. Naismith, I.R. Booth, Science 321, 1179 (2008)CrossRefGoogle Scholar
  146. Y. Wang, Y. Liu, H.A. Deberg, T. Nomura, M.T. Hoffman, P.R. Rohde, K. Schulten, B. Martinac, P.R. Selvin, elife 3, e01834 (2014)CrossRefGoogle Scholar
  147. R. Ward et al., Biophys. J. 106, 834 (2014)CrossRefGoogle Scholar
  148. P. Wiggins, R. Phillips, Proc. Natl. Acad. Sci. U. S. A. 101, 4071 (2004)CrossRefGoogle Scholar
  149. K.M. Wisdom, S.L. Delp, E. Kuhl, Biomech. Model. Mechanobiol. 14, 195 (2014)CrossRefGoogle Scholar
  150. S. Yefimov, E. van der Giessen, P.R. Onck, S.J. Marrink, Biophys. J. 94, 2994 (2008)CrossRefGoogle Scholar
  151. S.O. Yesylevskyy, L.V. Schafer, D. Sengupta, S.J. Marrink, PLoS Comput. Biol. 6, e1000810 (2010)CrossRefGoogle Scholar
  152. Y. Zeng, A.K. Yip, S.K. Teo, K.H. Chiam, Biomech. Model. Mechanobiol. 11, 49 (2012)CrossRefGoogle Scholar
  153. L. Zhu, J. Wu, L. Liu, Y. Liu, Y. Yan, Q. Cui, X. Chen, Biomech. Model. Mechanobiol. 15, 1557 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liangliang Zhu
    • 1
    • 2
  • Qiang Cui
    • 4
  • Yilun Liu
    • 1
  • Yuan Yan
    • 5
  • Hang Xiao
    • 5
  • Xi Chen
    • 3
  1. 1.Columbia Nanomechanics Research Center, Department of Earth and Environmental EngineeringColumbia UniversityNew YorkUSA
  2. 2.International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace, Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Earth and Environmental Engineering, Columbia Nanomechanics Research CenterColumbia UniversityNew YorkUSA
  4. 4.Department of Chemistry and Theoretical Chemistry InstituteUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.School of Chemical EngineeringNorthwest UniversityXi’anChina

Personalised recommendations