Advertisement

Finite Differences and Finite Elements in Nonlocal Fracture Modeling: A Priori Convergence Rates

  • Prashant K. Jha
  • Robert Lipton
Reference work entry

Abstract

In this chapter we present a rigorous convergence analysis of finite difference and finite element approximation of nonlinear nonlocal models. In the previous chapter, we considered a differentiable version of the original bond-based model introduced in Silling (J Mech Phys Solids 48(1):175–209, 2000). There we showed, for a fixed horizon of nonlocal interaction 𝜖, that well-posed formulations of the model can be developed over Hölder spaces and Sobolev spaces. In this chapter we apply these formulations to show a priori convergence for the discrete finite difference and finite element methods. We show that the error made using the forward Euler in time and a finite difference (i.e., piecewise constant) discretization in space with time step Δt and spatial discretization h is of the order of O( Δt + h𝜖2). For a central difference approximation in time and piecewise linear finite element approximation in space, the approximation error is of the order of O( Δt + h2𝜖2). We point out these are the first such error estimates for nonlinear nonlocal fracture formulations and are reported in Jha and Lipton (2017b Numerical analysis of nonlocal fracture models models in holder space. arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical Analysis 2018) and Jha and Lipton (2017a, Finite element approximation of nonlocal fracture models. arXiv preprint arXiv:1710.07661). We then go on to prove the stability of the semi-discrete approximation and show that the energy of the discrete approximation is bounded in terms of work done by the body force and initial energy put into the system. We look forward to improvements and development of a posteriori error estimation in the coming years.

Keywords

Peridynamic modeling Finite differences Finite elements Stability Convergence 

Notes

Acknowledgements

This material is based upon work supported by the US Army Research Laboratory and the US Army Research Office under contract/grant number W911NF1610456.

References

  1. A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)CrossRefGoogle Scholar
  2. B. Aksoylu, T. Mengesha, Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31(12), 1301–1317 (2010)MathSciNetCrossRefGoogle Scholar
  3. B. Aksoylu, ML Parks, Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comput. 217(14), 6498–6515 (2011)MathSciNetGoogle Scholar
  4. B. Aksoylu, Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)MathSciNetCrossRefGoogle Scholar
  5. L. Ambrosio, A. Coscia, G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)MathSciNetCrossRefGoogle Scholar
  6. D.N. Arnold, Lecture notes on numerical analysis of partial differential equations (2011), http://www.math.umn.edu/~arnold/8445/notes.pdf
  7. E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, O. Weckner, Peridynamics for multiscale materials modeling. J Phys Conf Ser 125, 012078 (2008). IOP PublishingGoogle Scholar
  8. G.A. Baker, Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)MathSciNetCrossRefGoogle Scholar
  9. F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)CrossRefGoogle Scholar
  10. F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J. Xu, Convergence, adaptive refinement, and scaling in 1d peridynamics. Int. J. Numer. Meth. Eng. 77(6), 852–877 (2009)CrossRefGoogle Scholar
  11. X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Meth. Appl. Mech. Eng. 200(9), 1237–1250 (2011)MathSciNetCrossRefGoogle Scholar
  12. K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion. J. Mech. Phys. Solids 105, 235–253 (2017)MathSciNetCrossRefGoogle Scholar
  13. P. Diehl, R. Lipton, M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. Institut für Numerische Simulation Preprint, (2016)Google Scholar
  14. Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic navier equation of linear elasticity. J. Elast. 113(2), 193–217 (2013a)MathSciNetCrossRefGoogle Scholar
  15. Q. Du, L. Tian, X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013b)MathSciNetCrossRefGoogle Scholar
  16. Q. Du, K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM Math. Model. Numer. Anal. 45(2), 217–234 (2011)MathSciNetCrossRefGoogle Scholar
  17. Q. Du, Y. Tao, X. Tian, A peridynamic model of fracture mechanics with bond-breaking. J. Elast. (2017).  https://doi.org/10.1007/s10659-017-9661-2 MathSciNetCrossRefGoogle Scholar
  18. E. Emmrich, R.B. Lehoucq, D. Puhst, Peridynamics: a nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI (Springer, Berlin/Heidelberg, 2013), pp. 45–65CrossRefGoogle Scholar
  19. E. Emmrich, O. Weckner, et al. On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007)MathSciNetCrossRefGoogle Scholar
  20. E. Emmrich, D. Puhst, A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016)MathSciNetCrossRefGoogle Scholar
  21. J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9(6), 675–688 (2011)CrossRefGoogle Scholar
  22. W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12), 1250–1258 (2007)CrossRefGoogle Scholar
  23. M.J. Grote, D. Schötzau, Optimal error estimates for the fully discrete interior penalty dg method for the wave equation. J. Sci. Comput. 40(1), 257–272 (2009)MathSciNetCrossRefGoogle Scholar
  24. Q. Guan, M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation. Numer. Meth. Partial Differ. Equ. 31(2), 500–516 (2015)MathSciNetCrossRefGoogle Scholar
  25. Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)CrossRefGoogle Scholar
  26. P.K. Jha, R. Lipton, Finite element approximation of nonlocal fracture models (2017a). arXiv preprint arXiv:1710.07661Google Scholar
  27. P.K. Jha, R. Lipton, Numerical analysis of nonlocal fracture models models in holder space (2017b). arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical Analysis 2018Google Scholar
  28. P.K. Jha, R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics (2017c). arXiv preprint arXiv:1707.00398. To appear in International Journal for Numerical Methods in Engineering 2018Google Scholar
  29. S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation. J. Appl. Math. Comput. 40(1–2), 659–682 (2012)MathSciNetCrossRefGoogle Scholar
  30. R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117(1), 21–50 (2014)MathSciNetCrossRefGoogle Scholar
  31. R. Lipton, Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)MathSciNetCrossRefGoogle Scholar
  32. R. Lipton, S. Silling, R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics (2016). arXiv preprint arXiv:1602.00247Google Scholar
  33. R. Lipton, E. Said, P. Jha, Free damage propagation with memory. Journal of Elasticity, 1–25 (2018).  https://doi.org/10.1007/s10659-018-9672
  34. D.J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) (2010)Google Scholar
  35. R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)MathSciNetCrossRefGoogle Scholar
  36. T. Mengesha, Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel. Discrete Contin. Dynam. Syst. B 18, 1415–1437 (2013)MathSciNetCrossRefGoogle Scholar
  37. T. Mengesha, Q. Du, Nonlocal constrained value problems for a linear peridynamic navier equation. J. Elast. 116(1), 27–51 (2014)MathSciNetCrossRefGoogle Scholar
  38. S. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1–2), 219–227 (2010)CrossRefGoogle Scholar
  39. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefGoogle Scholar
  40. X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)MathSciNetCrossRefGoogle Scholar
  41. X. Tian, Q. Du, M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016a)MathSciNetCrossRefGoogle Scholar
  42. X. Tian, Q. Du, M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016b)MathSciNetCrossRefGoogle Scholar
  43. O. Weckner, E. Emmrich, Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J. Comput. Appl. Mech. 6(2), 311–319 (2005)MathSciNetzbMATHGoogle Scholar
  44. G. Zhang, Q. Le, A. Loghin, A. Subramaniyan, F. Bobaru, Validation of a peridynamic model for fatigue cracking. Eng. Fract. Mech. 162, 76–94 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Mathematics, and Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations