Nanostructural Response to Plastic Deformation in Glassy Polymers

  • George Z. VoyiadjisEmail author
  • Aref Samadi-Dooki
Reference work entry


A closed form stress-strain relation is proposed for modeling the postyield behavior of amorphous polymers based on the shear transformation zones (STZs) dynamics and free volume evolution. Use is made of the classical free volume theory by Cohn and Turnbull (J Chem Phys 31:1164, 1959), and also STZ-mediated plasticity model for amorphous metals by Spaepen (Acta Metall 25:407, 1977) and Argon (Acta Metall 27:47, 1979) for developing a new homogenous plasticity framework for glassy polymers. The variations of free volume content and STZs activation energy during large deformation are parametrized considering the previous experimental measurements using positron annihilation lifetime spectroscopy (PALS) and thermal analysis with differential scanning calorimetry (DSC), respectively. The proposed model captures the softening-hardening behavior of glassy polymers at large strains with a single formula. This study shows that the postyield softening of the glassy polymers is a result of the reduction of the STZs nucleation energy as a consequence of increased free volume content during the plastic straining up to a steady-state point. Beyond the steady-state strain where the STZ nucleation energy reaches a plateau, the increased number density of STZs, which is required for finite strain, brings about the secondary hardening continuing up to the fracture point. This model also accurately predicts the effect of strain rate, temperature, and thermal history of the sample on its postyield behavior which is in consonance with experimental observations. Implication of the model for interpreting the localization and indentation size effect of polymers is also discussed.


Plasticity Polymer Amorphous Free volume Shear transformation Stress Strain Energy Deformation Microstructure Chain Rate Glass 


  1. L. Anand, W. Spitzig, Acta Metall. 30, 553 (1982)CrossRefGoogle Scholar
  2. A. Argon, Philos. Mag. 28, 839 (1973)CrossRefGoogle Scholar
  3. A. Argon, Acta Metall. 27, 47 (1979)CrossRefGoogle Scholar
  4. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2008)Google Scholar
  5. A.S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, New York, 2013)CrossRefGoogle Scholar
  6. A. Argon, M. Demkowicz, Philos. Mag. 86, 4153 (2006)CrossRefGoogle Scholar
  7. A. Argon, M. Demkowicz, Metall. Mater. Trans. A 39, 1762 (2008)CrossRefGoogle Scholar
  8. E.M. Arruda, M.C. Boyce, in Anisotropy and Localization of Plastic Deformation, ed. by J-P. Boehler, A.S. Khan (Elsevier Applied Science, London and New York, 1991), p. 483Google Scholar
  9. E.M. Arruda, M.C. Boyce, H. Quintus-Bosz, Int. J. Plast. 9, 783 (1993)CrossRefGoogle Scholar
  10. E.M. Arruda, M.C. Boyce, R. Jayachandran, Mech. Mater. 19, 193 (1995)CrossRefGoogle Scholar
  11. H. Bedayat, A.D. Taleghani, Mech. Mater. 69, 204 (2014)CrossRefGoogle Scholar
  12. M.C. Boyce, D.M. Parks, A.S. Argon, Mech. Mater. 7, 15 (1988)CrossRefGoogle Scholar
  13. K. Chen, K.S. Schweizer, Macromolecules 44, 3988 (2011)CrossRefGoogle Scholar
  14. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)CrossRefGoogle Scholar
  15. P. De Hey, J. Sietsma, A. Van Den Beukel, Acta Mater. 46, 5873 (1998)CrossRefGoogle Scholar
  16. J.D. Eshelby, Proc. Roy. Soc. London Ser. A 241, 376 (1957)Google Scholar
  17. H. Eyring, J. Chem. Phys. 4, 283 (1936)CrossRefGoogle Scholar
  18. M.L. Falk, Science 318, 1880 (2007)CrossRefGoogle Scholar
  19. M. Falk, J. Langer, L. Pechenik, Phys. Rev. E 70, 011507 (2004)CrossRefGoogle Scholar
  20. K. Flores, D. Suh, R. Dauskardt, P. Asoka-Kumar, P. Sterne, R. Howell, J. Mater. Res. 17, 1153 (2002)CrossRefGoogle Scholar
  21. W. Gall, N. McCrum, J. Polym. Sci. 50, 489 (1961)CrossRefGoogle Scholar
  22. N. Ghadipasha, A. Geraili, J.A. Romagnoli, C.A. Castor, M.F. Drenski, W.F. Reed, Processes 4, 5 (2016)CrossRefGoogle Scholar
  23. E. Gunel, C. Basaran, Mater. Sci. Eng. A 523, 160 (2009)CrossRefGoogle Scholar
  24. E. Gunel, C. Basaran, J. Eng. Mater. Technol. 132, 031002 (2010)CrossRefGoogle Scholar
  25. E. Gunel, C. Basaran, Mech. Mater. 43, 979 (2011a)CrossRefGoogle Scholar
  26. E. Gunel, C. Basaran, Mech. Mater. 43, 992 (2011b)CrossRefGoogle Scholar
  27. E. Gunel, C. Basaran, Mech. Mater. 57, 134 (2013)CrossRefGoogle Scholar
  28. O. Hasan, M. Boyce, Polym. Eng. Sci. 35, 331 (1995)CrossRefGoogle Scholar
  29. O. Hasan, M. Boyce, X. Li, S. Berko, J. Polym. Sci. B Polym. Phys. 31, 185 (1993)CrossRefGoogle Scholar
  30. P. de Hey, J. Sietsma, A. Van Den Beukel, Mater. Sci. Eng. A 226, 336 (1997)CrossRefGoogle Scholar
  31. J. Ho, L. Govaert, M. Utz, Macromolecules 36, 7398 (2003)CrossRefGoogle Scholar
  32. D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Macromolecules 35, 2129 (2002)CrossRefGoogle Scholar
  33. D.L. Holt, J. Appl. Polym. Sci. 12, 1653 (1968)CrossRefGoogle Scholar
  34. H. Hristov, B. Bolan, A. Yee, L. Xie, D. Gidley, Macromolecules 29, 8507 (1996)CrossRefGoogle Scholar
  35. J. Hutchinson, S. Smith, B. Horne, G. Gourlay, Macromolecules 32, 5046 (1999)CrossRefGoogle Scholar
  36. Y. Jean, Microchem. J. 42, 72 (1990)MathSciNetCrossRefGoogle Scholar
  37. Y. Jean, J.D. Van Horn, W.-S. Hung, K.-R. Lee, Macromolecules 46, 7133 (2013)CrossRefGoogle Scholar
  38. M. Khoshgoftar, S. Najarian, F. Farmanzad, B. Vahidi, F. Ghomshe, Am. J. Appl. Sci. 4, 918 (2007)CrossRefGoogle Scholar
  39. E. Klompen, T. Engels, L. Govaert, H. Meijer, Macromolecules 38, 6997 (2005)CrossRefGoogle Scholar
  40. H. Kobayashi, H. Takahashi, Y. Hiki, J. Non-Cryst. Solids 290, 32 (2001)CrossRefGoogle Scholar
  41. D.C. Lam, A.C. Chong, J. Mater. Res. 14, 3784 (1999)CrossRefGoogle Scholar
  42. J. Langer, L. Pechenik, Phys. Rev. E 68, 061507 (2003)CrossRefGoogle Scholar
  43. H. Li, C. Buckley, Int. J. Solids Struct. 46, 1607 (2009)CrossRefGoogle Scholar
  44. L. Li, E. Homer, C. Schuh, Acta Mater. 61, 3347 (2013)CrossRefGoogle Scholar
  45. L. Malekmotiei, F. Farahmand, H.M. Shodja, A. Samadi-Dooki, J. Biomech. Eng. 135, 041004 (2013)CrossRefGoogle Scholar
  46. L. Malekmotiei, A. Samadi-Dooki, G.Z. Voyiadjis, Macromolecules 48, 5348 (2015)CrossRefGoogle Scholar
  47. A.D. Mulliken, Low to high strain rate deformation of amorphous polymers: experiments and modeling (Massachusetts Institute of Technology, Massachusetts, 2004)Google Scholar
  48. A. Mulliken, M. Boyce, Int. J. Solids Struct. 43, 1331 (2006)CrossRefGoogle Scholar
  49. T. Mura, in Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Netherlands, 1987)Google Scholar
  50. Y. Nanzai, A. Miwa, S.Z. Cui, JSME Int. J. Ser. A Solid Mech. Mater. Eng. 42, 479 (1999)CrossRefGoogle Scholar
  51. M. Nasraoui, P. Forquin, L. Siad, A. Rusinek, Mater. Des. 37, 500 (2012)CrossRefGoogle Scholar
  52. E. Oleinik, in High Performance Polymers, ed. by E. Baer, A. Moet (Hanser, New York, 1991), p. 79Google Scholar
  53. E. Oleinik, S. Rudnev, O. Salamatina, Polym. Sci. Ser. A 49, 1302 (2007)CrossRefGoogle Scholar
  54. S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9, 473 (2010)CrossRefGoogle Scholar
  55. T. Ree, H. Eyring, J. Appl. Phys. 26, 793 (1955)CrossRefGoogle Scholar
  56. R.E. Robertson, J. Chem. Phys. 44, 3950 (1966)CrossRefGoogle Scholar
  57. J. Roetling, Polymer 6, 311 (1965)CrossRefGoogle Scholar
  58. A. Samadi-Dooki, L. Malekmotiei, G.Z. Voyiadjis, Polymer 82, 238 (2016)CrossRefGoogle Scholar
  59. H. Shodja, A. Khorshidi, J. Mech. Phys. Solids 61, 1124 (2013)MathSciNetCrossRefGoogle Scholar
  60. H. Shodja, M. Tabatabaei, A. Ostadhossein, L. Pahlevani, Open Eng. 3, 707 (2013)CrossRefGoogle Scholar
  61. F. Spaepen, Acta Metall. 25, 407 (1977)CrossRefGoogle Scholar
  62. Y. Sun, J. Cent. S. Univ. Technol. 14, 342 (2007)CrossRefGoogle Scholar
  63. L.A. Utracki, A.M. Jamieson, Polymer Physics: From Suspensions to Nanocomposites and Beyond (Wiley, New York, 2011)Google Scholar
  64. G.Z. Voyiadjis, L. Malekmotiei, J. Polym. Sci. Part B: Polym. Phys. 54, 2179 (2016)CrossRefGoogle Scholar
  65. G.Z. Voyiadjis, A. Samadi-Dooki, J. Appl. Phys. 119, 225104 (2016)CrossRefGoogle Scholar
  66. G.Z. Voyiadjis, M. Yaghoobi, Mater. Sci. Eng. A 634, 20 (2015)CrossRefGoogle Scholar
  67. G.Z. Voyiadjis, A. Shojaei, N. Mozaffari, Polymer 55, 4182 (2014)CrossRefGoogle Scholar
  68. Y. Wang, H. Nakanishi, Y. Jean, T. Sandreczki, J. Polym. Sci. B Polym. Phys. 28, 1431 (1990)CrossRefGoogle Scholar
  69. D. Wang, Z. Zhu, R. Xue, D. Ding, H. Bai, W. Wang, J. Appl. Phys. 114, 173505 (2013)CrossRefGoogle Scholar
  70. R. Xiao, T.D. Nguyen, J. Mech. Phys. Solids 82, 62 (2015)MathSciNetCrossRefGoogle Scholar
  71. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, Å. Kvick, Acta Mater. 53, 1611 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Computational Solid Mechanics Laboratory, Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations