Peridynamics: Introduction

  • S. A. SillingEmail author
Reference work entry


The peridynamic theory is a nonlocal extension of continuum mechanics that is compatible with the physical nature of cracks as discontinuities. It avoids the need to evaluate the partial derivatives of the deformation with respect to the spatial coordinates, instead using an integro-differential equation for the linear momentum balance. This chapter summarizes the peridynamic theory, emphasizing the continuum mechanical and thermodynamic aspects. Formulation of material models is discussed, including details on the statement of models using mathematical objects called peridynamic states that are nonlocal and nonlinear generalizations of second-order tensors. Damage evolution is treated within a nonlocal thermodynamic framework making use of the dependence of free energy on damage. Continuous, stable growth of damage can suddenly become unstable, leading to dynamic fracture. Peridynamics treats fracture and long-range forces on the same mathematical basis as continuous deformation and contact forces, extending the applicability of continuum mechanics to new classes of problems.


Peridynamic Nonlocal Damage Elasticity Plasticity Eulerian 



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.


  1. F. Bobaru, M. Duangpanya, The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)CrossRefGoogle Scholar
  2. F. Bobaru, M. Duangpanya, A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231, 2764–2785 (2012)MathSciNetCrossRefGoogle Scholar
  3. Z. Chen, F. Bobaru, Peridynamic modeling of pitting corrosion damage. J. Mech. Phys. Solids 78, 352–381 (2015)MathSciNetCrossRefGoogle Scholar
  4. S.R. Chowdhury, P. Roy, D. Roy, J. Reddy, A peridynamic theory for linear elastic shells. Int. J. Solids Struct. 84, 110–132 (2016)CrossRefGoogle Scholar
  5. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefGoogle Scholar
  6. C. Diyaroglu, E. Oterkus, S. Oterkus, E. Madenci, Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRefGoogle Scholar
  7. E. Emmrich, O. Weckner, et al., On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)MathSciNetCrossRefGoogle Scholar
  8. J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity using peridynamics. Int. J. Numer. Methods Eng. 81, 1242–1258 (2010)zbMATHGoogle Scholar
  9. E. Fried, New insights into the classical mechanics of particle systems. Discrete Contin. Dyn. Syst. 28, 1469–1504 (2010)MathSciNetCrossRefGoogle Scholar
  10. W. Gerstle, N. Sau, S.A. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRefGoogle Scholar
  11. W. Gerstle, S. Silling, D. Read, V. Tewary, R. Lehoucq, Peridynamic simulation of electromigration. Comput. Mater. Continua 8, 75–92 (2008)Google Scholar
  12. W. Gerstle, N. Sakhavand, S. Chapman, Peridynamic and continuum models of reinforced concrete lap splice compared, in Fracture Mechanics of Concrete and Concrete Structures, Recent Advances in Fracture Mechanics of Concrete, ed. by B.H. Oh, et al. (2010), pp. 306–312Google Scholar
  13. J. O'Grady, J. Foster, Peridynamic plates and flat shells: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 4572–4579 (2014)CrossRefGoogle Scholar
  14. M.E. Gurtin, W.O. Williams, On the first law of thermodynamics. Arch. Ration. Mech. Anal. 42, 77–92 (1971)MathSciNetCrossRefGoogle Scholar
  15. M.E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua (Cambridge University Press, Cambridge, 2010), pp. 232–233Google Scholar
  16. W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217, 247–261 (2012a)MathSciNetCrossRefGoogle Scholar
  17. W. Hu, Y.D. Ha, F. Bobaru, S.A. Silling, The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176, 195–206 (2012b)CrossRefGoogle Scholar
  18. W. Hu, Y. Wang, J. Yu, C.-F. Yen, F. Bobaru, Impact damage on a thin glass plate with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)CrossRefGoogle Scholar
  19. B. Jeon, R.J. Stewart, I.Z. Ahmed, Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts. Proc. R. Soc. A 471, 20150231. (2015)CrossRefGoogle Scholar
  20. A. Katiyar, J.T. Foster, H. Ouchi, M.M. Sharma, A peridynamic formulation of pressure driven convective fluid transport in porous media. J. Comput. Phys. 261, 209–229 (2014)MathSciNetCrossRefGoogle Scholar
  21. B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156, 165–177 (2009)CrossRefGoogle Scholar
  22. R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011)CrossRefGoogle Scholar
  23. R.B. Lehoucq, S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)MathSciNetCrossRefGoogle Scholar
  24. R.B. Lehoucq, O.A. von Lilienfeld, Translation of Walter Noll’s derivation of the fundamental equations of continuum thermodynamics from statistical mechanics. J. Elast. 100, 5–24 (2010)CrossRefGoogle Scholar
  25. E. Lejeune, C. Linder, Modeling tumor growth with peridynamics. Biomech. Model. Mechanobiol., 1–17 (2017a)Google Scholar
  26. E. Lejeune, C. Linder, Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J. Theor. Biol. 418, 1–7 (2017b)MathSciNetCrossRefGoogle Scholar
  27. R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014)MathSciNetCrossRefGoogle Scholar
  28. R. Lipton, Cohesive dynamics and brittle fracture. J. Elast. 142, 1–49 (2016)MathSciNetzbMATHGoogle Scholar
  29. E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 86, 192–219 (2016)MathSciNetCrossRefGoogle Scholar
  30. J.A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics. Technical report SAND2011-8064, Sandia National Laboratories, Albuquerque/Livermore, October 2011aGoogle Scholar
  31. J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics. Technical report SAND2011-3166, Sandia National Laboratories, Albuquerque/Livermore, October 2011bGoogle Scholar
  32. S. Nadimi, State-based peridynamics simulation of hydraulic fracture phenomenon in geological media. Master’s thesis, The University of Utah, 2015Google Scholar
  33. W. Noll, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955.) In German, English translation availableMathSciNetzbMATHGoogle Scholar
  34. E. Oterkus, E. Madenci, Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct. 7, 45–84 (2012)CrossRefGoogle Scholar
  35. S. Oterkus, J. Fox, E. Madenci, Simulation of electro-migration through peridynamics, in 2013 IEEE 63rd Electronic Components and Technology Conference (IEEE, 2013), pp. 1488–1493Google Scholar
  36. S. Oterkus, E. Madenci, A. Agwai, Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014a)MathSciNetCrossRefGoogle Scholar
  37. S. Oterkus, E. Madenci, A. Agwai, Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014b)MathSciNetCrossRefGoogle Scholar
  38. H. Ouchi, A. Katiyar, J. Foster, M.M. Sharma, et al., A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs. in SPE Hydraulic Fracturing Technology Conference (Society of Petroleum Engineers, 2015)Google Scholar
  39. N. Prakash, G.D. Seidel, A coupled electromechanical peridynamics framework for modeling carbon nanotube reinforced polymer composites, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0936, (2016)Google Scholar
  40. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRefGoogle Scholar
  41. S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)MathSciNetCrossRefGoogle Scholar
  42. S.A. Silling, Solitary waves in a peridynamic elastic solid. J. Mech. Phys. Solids 96, 121–132 (2016)MathSciNetCrossRefGoogle Scholar
  43. S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods Appl. Mech. Eng. 322, 42–57 (2017)MathSciNetCrossRefGoogle Scholar
  44. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  45. S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRefGoogle Scholar
  46. S.A. Silling, R.B. Lehoucq, The peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–166 (2010)CrossRefGoogle Scholar
  47. S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRefGoogle Scholar
  48. S.A. Silling, D. Littlewood, P. Seleson, Variable horizon in a peridynamic medium. J. Mech. Mater. Struct. 10, 591–612 (2015)MathSciNetCrossRefGoogle Scholar
  49. S.A. Silling, M.L. Parks, J.R. Kamm, O. Weckner, M. Rassaian, Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int. J. Impact Eng. 107, 47–57 (2017)CrossRefGoogle Scholar
  50. S. Sun, V. Sundararaghavan, A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRefGoogle Scholar
  51. M. Taylor, I. Gözen, S. Patel, A. Jesorka, K. Bertoldi, Peridynamic modeling of ruptures in biomembranes. PLoS One 11, e0165947 (2016)CrossRefGoogle Scholar
  52. M. Tupek, R. Radovitzky, An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J. Mech. Phys. Solids 65, 82–92 (2014)MathSciNetCrossRefGoogle Scholar
  53. C.W. Van Der Merwe, A peridynamic model for sleeved hydraulic fracture. Master’s thesis, Stellenbosch University, Stellenbosch, (2014)Google Scholar
  54. T.L. Warren, S.A. Silling, A. Askari, O. Weckner, M.A. Epton, J. Xu, A nonordinary state-based peridynamic method to model solid material deformation and fracture. Int. J. Solids Struct. 46, 1186–1195 (2009)CrossRefGoogle Scholar
  55. O. Weckner, N.A.N. Mohamed, Viscoelastic material models in peridynamics. Appl. Math. Comput. 219, 6039–6043 (2013)MathSciNetzbMATHGoogle Scholar
  56. R. Wildman, G. Gazonas, A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J. Mech. Mater. Struct. 10, 613–630 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations