Shear Transformation Zones in Amorphous Polymers: Geometrical and Micromechanical Properties

  • George Z. VoyiadjisEmail author
  • Leila Malekmotiei
  • Aref Samadi-Dooki
Reference work entry


Glassy polymers are extensively used as high impact resistant, low density, and clear materials in industries. Due to the lack of the long-range order in the microstructures of glassy solids, plastic deformation is different from that in crystalline solids. Shear transformation zones (STZs) are believed to be the plasticity carriers in amorphous solids and defined as the localized atomic or molecular deformation patches induced by shear. Despite a great effort in characterizing these local disturbance regions in metallic glasses (MGs), there are still many unknowns relating to the microstructural and micromechanical characteristics of STZs in glassy polymers. This chapter is aimed at investigating the flow phenomenon in polycarbonate (PC) and poly(methyl methacrylate) (PMMA) as glassy polymers and obtaining the mechanical and geometrical characteristics of their STZs. To achieve this goal, the nanoindentation experiments are performed on samples with two different thermal histories: as-cast and annealed, and temperature and strain rate dependency of the yield stress of PC and PMMA are studied. Based on the experimental results, it is showed that the flow in PC and PMMA is a homogeneous phenomenon at tested temperatures and strain rates. The homogeneous flow theory is then applied to analyze the STZs quantitatively. The achieved results are discussed for their possible uniqueness or applicability to all glassy polymers in the context of amorphous plasticity.


Glassy polymers Shear transformation zone Nucleation energy Shear activation volume Homogeneous flow Amorphous Transformation shear strain β-transition Nanoindentation Hardness Plasticity 


  1. L. Anand, M.E. Gurtin, Int. J. Solids Struct. 40, 1465 (2003)CrossRefGoogle Scholar
  2. A. Argon, Philos. Mag. 28, 839 (1973)CrossRefGoogle Scholar
  3. A. Argon, Acta Metall. 27, 47 (1979)CrossRefGoogle Scholar
  4. A.S. Argon, Mater. Sci. Technol. (1993)Google Scholar
  5. A. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press on Demand, Oxford, 2008)Google Scholar
  6. A.S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar
  7. A.S. Argon, M. Bessonov, Philos. Mag. 35, 917 (1977)CrossRefGoogle Scholar
  8. E.M. Arruda, M.C. Boyce, R. Jayachandran, Mech. Mater. 19, 193 (1995)CrossRefGoogle Scholar
  9. L. Barral, J. Cano, A. López, P. Nogueira, C. Ramírez, J. Therm. Anal. Calorim. 41, 1463 (1994)CrossRefGoogle Scholar
  10. C. Bauwens-Crowet, J. Bauwens, G. Homes, J. Polym, Sci. Part A-2: Polym. Phys. 7, 735 (1969)CrossRefGoogle Scholar
  11. M.C. Boyce, D.M. Parks, A.S. Argon, Mech. Mater. 7, 15 (1988)CrossRefGoogle Scholar
  12. B. Briscoe, L. Fiori, E. Pelillo, J. Phys. D. Appl. Phys. 31, 2395 (1998)CrossRefGoogle Scholar
  13. R.D. Calleja, I. Devine, L. Gargallo, D. Radić, Polymer 35, 151 (1994)CrossRefGoogle Scholar
  14. K. Chen, K.S. Schweizer, Macromolecules 44, 3988 (2011)CrossRefGoogle Scholar
  15. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond., Ser. A 241, 376 (1957)Google Scholar
  16. M.L. Falk, Science 318, 1880 (2007)CrossRefGoogle Scholar
  17. M.L. Falk, J.S. Langer, L. Pechenik, Toward a Shear-Transformation-Zone Theory of Amorphous Plasticity. In: Yip S. (eds) Handbook of Materials Modeling (Springer, Dordrecht, 2005), pp 1281–1312CrossRefGoogle Scholar
  18. W. Gall, N. McCrum, J. Polym. Sci. 50, 489 (1961)CrossRefGoogle Scholar
  19. Y.I. Golovin, V. Ivolgin, V. Khonik, K. Kitagawa, A. Tyurin, Scr. Mater. 45, 947 (2001)CrossRefGoogle Scholar
  20. J. Hay, P. Agee, E. Herbert, Exp. Tech. 34, 86 (2010)CrossRefGoogle Scholar
  21. T. Hirata, T. Kashiwagi, J.E. Brown, Macromolecules 18, 1410 (1985)CrossRefGoogle Scholar
  22. J. Ho, L. Govaert, M. Utz, Macromolecules 36, 7398 (2003)CrossRefGoogle Scholar
  23. J. Hutchinson, S. Smith, B. Horne, G. Gourlay, Macromolecules 32, 5046 (1999)CrossRefGoogle Scholar
  24. J. Jancar, R.S. Hoy, A.J. Lesser, E. Jancarova, J. Zidek, Macromolecules 46, 9409 (2013)CrossRefGoogle Scholar
  25. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987)Google Scholar
  26. J. Ju, D. Jang, A. Nwankpa, M. Atzmon, J. Appl. Phys. 109, 053522 (2011)CrossRefGoogle Scholar
  27. J.-Y. Kim, S.-K. Kang, J.-J. Lee, J.-i. Jang, Y.-H. Lee, D. Kwon, Acta Mater. 55, 3555 (2007)CrossRefGoogle Scholar
  28. X. Li, B. Bhushan, Mater. Charact. 48, 11 (2002)CrossRefGoogle Scholar
  29. L. Li, E. Homer, C. Schuh, Acta Mater. 61, 3347 (2013)CrossRefGoogle Scholar
  30. Y. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M. Chen, Phys. Rev. Lett. 106, 125504 (2011)CrossRefGoogle Scholar
  31. B. Lucas, W. Oliver, Metall. Mater. Trans. A 30, 601 (1999)CrossRefGoogle Scholar
  32. B. Lucas, W. Oliver, J. Swindeman, The dynamics of frequency-specific, depth-sensing indentation testing, MRS Online Proceedings Library Archive 522 (1998)Google Scholar
  33. L. Malekmotiei, F. Farahmand, H.M. Shodja, A. Samadi-Dooki, J. Biomech. Eng. 135, 041004 (2013)CrossRefGoogle Scholar
  34. L. Malekmotiei, A. Samadi-Dooki, G.Z. Voyiadjis, Macromolecules 48, 5348 (2015)CrossRefGoogle Scholar
  35. P. Mott, A. Argon, U. Suter, Philos. Mag. A 67, 931 (1993)CrossRefGoogle Scholar
  36. A. Mulliken, M. Boyce, Int. J. Solids Struct. 43, 1331 (2006)CrossRefGoogle Scholar
  37. T. Mura, Micromechanics of defects in solids (Springer Science & Business Media, 2013)Google Scholar
  38. P. Nagy, I.I. Kükemezey, S. Kassavetis, P. Berke, M.-P. Delplancke-Ogletree, S. Logothetidis, Nanosci. Nanotechnol. Lett. 5, 480 (2013)CrossRefGoogle Scholar
  39. E. Oleinik, S. Rudnev, O. Salamatina, Polym. Sci. Ser. A 49, 1302 (2007)CrossRefGoogle Scholar
  40. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  41. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  42. D. Pan, A. Inoue, T. Sakurai, M. Chen, Proc. Natl. Acad. Sci. 105, 14769 (2008)CrossRefGoogle Scholar
  43. D. Pan, Y. Yokoyama, T. Fujita, Y. Liu, S. Kohara, A. Inoue, M. Chen, Appl. Phys. Lett. 95, 141909 (2009)CrossRefGoogle Scholar
  44. S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9, 473 (2010)CrossRefGoogle Scholar
  45. J. Pethica, W. Oliver, Mechanical properties of nanometre volumes of material: use of the elastic response of small area indentations, in MRS Proceedings (Cambridge University Press, 1988)Google Scholar
  46. W. Poisl, W. Oliver, B. Fabes, J. Mater. Res. 10, 2024 (1995)CrossRefGoogle Scholar
  47. K.E. Prasad, V. Keryvin, U. Ramamurty, J. Mater. Res. 24, 890 (2009)CrossRefGoogle Scholar
  48. T. Ree, H. Eyring, J. Appl. Phys. 26, 800 (1955)CrossRefGoogle Scholar
  49. D. Rittel, A. Dorogoy, J. Mech. Phys. Solids 56, 3191 (2008)CrossRefGoogle Scholar
  50. R.E. Robertson, J. Chem. Phys. 44, 3950 (1966)CrossRefGoogle Scholar
  51. A. Samadi-Dooki, L. Malekmotiei, G.Z. Voyiadjis, Polymer 82, 238 (2016)CrossRefGoogle Scholar
  52. C.A. Schuh, T. Nieh, Acta Mater. 51, 87 (2003)CrossRefGoogle Scholar
  53. C.A. Schuh, A.C. Lund, T. Nieh, Acta Mater. 52, 5879 (2004)CrossRefGoogle Scholar
  54. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
  55. H. Shodja, I. Rad, R. Soheilifard, J. Mech. Phys. Solids 51, 945 (2003)CrossRefGoogle Scholar
  56. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)CrossRefGoogle Scholar
  57. F. Spaepen, Acta Metall. 25, 407 (1977)CrossRefGoogle Scholar
  58. G. Spathis, E. Kontou, J. Appl. Polym. Sci. 79, 2534 (2001)CrossRefGoogle Scholar
  59. G. Stoclet, R. Seguela, J. Lefebvre, S. Elkoun, C. Vanmansart, Macromolecules 43, 1488 (2010)CrossRefGoogle Scholar
  60. G. Tandon, G. Weng, Polym. Compos. 5, 327 (1984)CrossRefGoogle Scholar
  61. T. A. Tervoort, Constitutive modelling of polymer glasses: finite, nonlinear viscoelastic behaviour of polycarbonate (Technische Universiteit Eindhoven, (1996)Google Scholar
  62. G.Z. Voyiadjis, L. Malekmotiei, J. Polym. Sci. Part B: Polym. Phys. 54, 2179 (2016)CrossRefGoogle Scholar
  63. G.Z. Voyiadjis, A. Samadi-Dooki, J. Appl. Phys. 119, 225104 (2016)CrossRefGoogle Scholar
  64. G.Z. Voyiadjis, C. Zhang, Mater. Sci. Eng. A 621, 218 (2015)CrossRefGoogle Scholar
  65. G.Z. Voyiadjis, D. Faghihi, C. Zhang, J. Nanomech. Micromech. 1, 24 (2011)CrossRefGoogle Scholar
  66. I.M. Ward, J. Mater. Sci. 6, 1397 (1971)CrossRefGoogle Scholar
  67. B. Yang, J. Wadsworth, T.-G. Nieh, Appl. Phys. Lett. 90, 061911 (2007)CrossRefGoogle Scholar
  68. H. Yu, W. Wang, H. Bai, Y. Wu, M. Chen, Phys. Rev. B 81, 220201 (2010)CrossRefGoogle Scholar
  69. G. Zhang, W. Wang, B. Zhang, J. Tan, C. Liu, Scr. Mater. 52, 1147 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • George Z. Voyiadjis
    • 1
    Email author
  • Leila Malekmotiei
    • 1
  • Aref Samadi-Dooki
    • 2
  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Computational Solid Mechanics Laboratory, Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations