Indentation Fatigue Mechanics

  • Baoxing XuEmail author
  • Xi Chen
  • Zhufeng Yue
Reference work entry


Instrumented indentation has been widely used in the determination of mechanical properties of materials due to its fast, simple, precise, and nondestructive merits over the past few years. In this chapter, we will present an emerging indentation technique, referred to as indentation fatigue, where a fatigue load is applied on a sample via a flat punch indenter, and establish the framework of mechanics of indentation fatigue to extract fatigue properties of materials. Through extensive experimental, theoretical, and computational investigations, we demonstrate a similarity between the indentation fatigue depth propagation and the fatigue crack growth, and propose an indentation fatigue depth propagation law and indentation fatigue strength law to describe indentation fatigue-induced deformation and failure of materials, respectively. This study provides an alternative approach for determining fatigue properties, as well as for studying the fatigue mechanisms of materials, especially for materials that are not available or feasible for conventional fatigue tests.


Indentation Fatigue loading Indentation depth propagation Crack propagation Strength 


  1. M. Abdel-Karim, N. Ohno, Kinematic hardening model suitable for ratchetting with steady-state. Int. J. Plast. 16, 225–240 (2000)zbMATHCrossRefGoogle Scholar
  2. D.H. Alsem, O.N. Pierron, E.A. Stach, C.L. Muhlstein, R.O. Ritchie, Mechanisms for fatigue of Micron-scale silicon structural films. Adv. Eng. Mater. 9, 15–30 (2007)CrossRefGoogle Scholar
  3. D.H. Alsem, C.L. Muhlstein, E.A. Stach, R.O. Ritchie, Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon. Scr. Mater. 59, 931–935 (2008)CrossRefGoogle Scholar
  4. S.A.S. Asif, K.J. Wahl, R.J. Colton, Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408–2413 (1999)CrossRefGoogle Scholar
  5. X. Baoxing, Y. Zhufeng, C. Xi, Characterization of strain rate sensitivity and activation volume using the indentation relaxation test. J. Phys. D. Appl. Phys. 43, 245401 (2010)CrossRefGoogle Scholar
  6. O.H. Basquin, The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10, 625–630 (1910)Google Scholar
  7. J.A. Berr’ıos, D.G. Teer, E.S. Puchi-Cabrera, Fatigue properties of a 316L stainless steel coated with different TiNx deposits. Surf. Coat. Technol. 148, 179–190 (2001)CrossRefGoogle Scholar
  8. T. S., Bhat, Indentation Analysis of Transversely Isotropic Materials, PhD thesis, Stony Brook University, Stony Brook, 2012Google Scholar
  9. S. Bhowmick, J.J. Meléndez-Martínez, B.R. Lawn, Bulk silicon is susceptible to fatigue. Appl. Phys. Lett. 91, 201902 (2007)CrossRefGoogle Scholar
  10. L.P. Borrego, J.M. Ferreira, J.M. Pinho da Cruz, J.M. Costa, Evaluation of overload effects on fatigue crack growth and closure. Eng. Fract. Mech. 70, 1379–1397 (2003)CrossRefGoogle Scholar
  11. J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663–1678 (2003)CrossRefGoogle Scholar
  12. P. Cavaliere, Cyclic deformation of ultra-fine and nanocrystalline metals through nanoindentation: Similarities with crack propagation. Procedia Eng. 2, 213–222 (2010)CrossRefGoogle Scholar
  13. J.L. Chaboche, D. Nouailhas, Constitutive modeling of ratchetting effects—part I: experimental facts and properties of the classical models. J. Eng. Mater. Technol. 111, 384–392 (1989a)CrossRefGoogle Scholar
  14. J.L. Chaboche, D. Nouailhas, Constitutive modeling of ratchetting effects—part II: possibilities of some additional kinematic rules. J. Eng. Mater. Technol. 111, 409–416 (1989b)CrossRefGoogle Scholar
  15. E.P. Chan, Y. Hu, P.M. Johnson, Z. Suo, C.M. Stafford, Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)CrossRefGoogle Scholar
  16. X. Chen, N. Ogasawara, M. Zhao, N. Chiba, On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618–1660 (2007)zbMATHCrossRefGoogle Scholar
  17. R. Chen, Y.C. Lu, F. Yang, G.P. Tandon, G.A. Schoeppner, Impression creep of PMR-15 resin at elevated temperatures. Polym. Eng. Sci. 50, 209–213 (2010)CrossRefGoogle Scholar
  18. Y.T. Cheng, C.M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284–1291 (1998)CrossRefGoogle Scholar
  19. Y.T. Cheng, C.M. Cheng, Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 811, 9–16 (2001)CrossRefGoogle Scholar
  20. Y.T. Cheng, C.M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91–149 (2004)CrossRefGoogle Scholar
  21. S.N.G. Chu, J.C.M. Li, Impression creep; a new creep test. J. Mater. Sci. 12, 2200–2208 (1977)CrossRefGoogle Scholar
  22. S.N.G. Chu, J.C.M. Li, Localized stress relaxation by impression testing. Mater. Sci. Eng. 45, 167–171 (1980a)CrossRefGoogle Scholar
  23. S.N.G. Chu, J.C.M. Li, Delayed retardation of overloading effects in impression fatigue. J. Eng. Mater. Technol. 102, 337–340 (1980b)CrossRefGoogle Scholar
  24. T. Connolley, P.E. McHugh, M. Bruzzi, A review of deformation and fatigue of metals at small size scales. Fatigue Fract. Eng. Mater. Struct. 28, 1119–1152 (2005)CrossRefGoogle Scholar
  25. G. Contreras, C. Fajardo, J.A. BerrõÂos, A. Pertuz, J. Chitty, H. Hintermann, E.S. Puchi, Fatigue properties of an AISI 1045 steel coated with an electroless Ni-P deposit. Thin Solid Films 355–356, 480–486 (1999)CrossRefGoogle Scholar
  26. J.A. D’ıaz, M. Passarelli, J.A. Berr’ıos, E.S. Puchi-Cabrera, Fatigue behavior of a 4340 steel coated with an electroless Ni-P deposit. Surf. Coat. Technol. 149, 45–56 (2002)CrossRefGoogle Scholar
  27. M. Dao, N. Chollacoop, K.J. VanVliet, T.A. Venkatesh, S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001)CrossRefGoogle Scholar
  28. R.H. Dauskardt, M.R. James, J.R. Porter, R.O. Ritchie, Cyclic fatigue-crack growth in SiC-whiskerreinforced alumina ceramic composite: Long and small-crack behavior. J. Am. Ceram. Soc. 75, 759–771 (1992)CrossRefGoogle Scholar
  29. P. Delobelle, P. Robinet, L. Bocher, Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel. Int. J. Plast. 11, 295–330 (1995)CrossRefGoogle Scholar
  30. J.-H. Dirks, E. Parle, D. Taylor, Fatigue of insect cuticle. J. Exp. Biol. 216, 1924–1927 (2013)CrossRefGoogle Scholar
  31. Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int. J. Fatigue 32, 898–907 (2010)CrossRefGoogle Scholar
  32. A.C. Fischer-Cripps, Nanoindentation (Spring-Verlag, New York, 2000)Google Scholar
  33. N.A. Fleck, R.A. Smith, Fatigue life prediction of a structural steel under service loading. Int. J. Fatigue 6, 203–210 (1984)CrossRefGoogle Scholar
  34. F. Guiberteau, N.P. Padture, H. Cai, B.R. Lawn, Indentation fatigue: a simple cyclic hertzian test for measuring damage accumulation in polycrystalline ceramics. Philos. Mag. A 68, 1003–1016 (1993)CrossRefGoogle Scholar
  35. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, Oxford, 1995)Google Scholar
  36. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, 1998)Google Scholar
  37. H.-W. Höppel, H. Mughrabi, A. Vinogradov, Bulk Nanostructured Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009), pp. 481–500Google Scholar
  38. Y. Hu, E.P. Chan, J.J. Vlassak, Z. Suo, Poroelastic relaxation indentation of thin layers of gels. J. Appl. Phys. 110, 086103 (2011)CrossRefGoogle Scholar
  39. H.L. Huang, N.J. Ho, The model of crack propagation in polycrystalline copper at various propagating rates. Mater. Sci. Eng. A 279, 254–260 (2000)CrossRefGoogle Scholar
  40. H.L. Huang, N.J. Ho, The observation of dislocation reversal in front of crack tips of polycrystalline copper after reducing maximum load. Mater. Sci. Eng. A 345, 215–222 (2003)CrossRefGoogle Scholar
  41. Y. Jiang, P. Kurath, Characteristics of the Armstrong-Frederick type plasticity models. Int. J. Plast. 12, 387–415 (1996)zbMATHCrossRefGoogle Scholar
  42. P. Jiang, T. Zhang, Y. Feng, R. Yang, N. Liang, Determination of plastic properties by instrumented spherical indentation: expanding cavity model and similarity solution approach. J. Mater. Res. 24, 1045–1053 (2009)CrossRefGoogle Scholar
  43. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)Google Scholar
  44. P. Kaszynski, E. Ghorbel, D. Marquis, An experimental study of ratchetting during indentation of 316L stainless steel. J. Eng. Mater. Technol. 120, 218–223 (1998)CrossRefGoogle Scholar
  45. R. Kumar, A. Kumar, S. Kumar, Delay effects in fatigue crack propagation. Int. J. Press. Vessel. Pip. 67, 1–5 (1996)CrossRefGoogle Scholar
  46. H. Lan, T.A. Venkatesh, Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025–2041 (2007)CrossRefGoogle Scholar
  47. B. Lawn, R. Wilshaw, Indentation fracture: principles and applications. J. Mater. Sci. 10, 1049–1081 (1975)CrossRefGoogle Scholar
  48. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  49. J.H. Lee, T. Kim, H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids Struct. 47, 647–664 (2010)zbMATHCrossRefGoogle Scholar
  50. J.C.M. Li, Impression creep and other localized tests. Mater. Sci. Eng. A 322, 23–42 (2002)CrossRefGoogle Scholar
  51. X.D. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)CrossRefGoogle Scholar
  52. J.C.M. Li, S.N.G. Chu, Impression fatigue. Scr. Metall. 13, 1021–1026 (1979)CrossRefGoogle Scholar
  53. W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling, The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099–3110 (1991)CrossRefGoogle Scholar
  54. X. Li, H. Gao, C.J. Murphy, K.K. Caswell, Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003)CrossRefGoogle Scholar
  55. P. Li, Q. Liao, S. Yang, X. Bai, Y. Huang, X. Yan, Z. Zhang, S. Liu, P. Lin, Z. Kang, Y. Zhang, In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. Nano Lett. 14, 480–485 (2014)CrossRefGoogle Scholar
  56. S.Y. Liu, I.W. Chen, Fatigue of yttria-stabilized zirconia - I. Fatigue damage, fracture origins and lifetime prediction. J. Am. Ceram. Soc. 74, 1197–1205 (1991)CrossRefGoogle Scholar
  57. S.J. Lloyd, A. Castellero, F. Giuliani, Y. Long, K.K. McLaughlin, J.M. Molina-Aldareguia, N.A. Stelmashenko, L.J. Vandeperre, W.J. Clegg, Observations of nanoindents via cross-sectional transmission electron microscopy: a survey of deformation mechanisms. Proc. R. Soc. A 461, 2521–2543 (2005)CrossRefGoogle Scholar
  58. J.L. Loubet, W.C. Oliver, B.N. Lucas, Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195–1198 (2000)CrossRefGoogle Scholar
  59. J. Luo, K. Dahmen, P.K. Liaw, Y. Shi, Low-cycle fatigue of metallic glass nanowires. Acta Mater. 87, 225–232 (2015)CrossRefGoogle Scholar
  60. D. Mclean, Mechanical Properties of Metals (Wiley Press, New Jersey, 1965)Google Scholar
  61. P. Miranzo, J.S. Moya, Elastic/plastic indentation in ceramics: a fracture toughness determination method. Ceram. Int. 10, 147–152 (1984)CrossRefGoogle Scholar
  62. J.C. Moosbrugger, D.J. Morrison, Nonlinear kinematic hardening rule parameters – direct determination from completely reversed proportional cycling. Int. J. Plast. 13, 633–668 (1997)zbMATHCrossRefGoogle Scholar
  63. K.A. Nibur, D.F. Bahr, Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055–1060 (2003)CrossRefGoogle Scholar
  64. J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren, J. Michler, In-situ nanoindentation in the SEM. Mater. Today 12(Supplement 1), 44–45 (2010)CrossRefGoogle Scholar
  65. N. Ohno, J. Wang, On modelling of kinematic hardening for ratcheting behaviour. Nucl. Eng. Des. 153, 205–212 (1995)CrossRefGoogle Scholar
  66. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRefGoogle Scholar
  67. E.S. Puchi-Cabrera, F. Mat’ınez, I. Herrera, J.A. Berr’ios, S. Dixit, D. Bhat, On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit. Surf. Coat. Technol. 182, 276–286 (2004)CrossRefGoogle Scholar
  68. G.D. Quinn, R.C. Bradt, On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673–680 (2007)CrossRefGoogle Scholar
  69. Y. Rao, R.J. Farris, Fatigue and creep of high-performance fibers: deformation mechanics and failure criteria. Int. J. Fatigue 30, 793–799 (2008)CrossRefGoogle Scholar
  70. R.O. Ritchie, Influence of microstructure on near-threshold fatigue crack propagation in ultra-high strength steel. Met. Sci. 11, 368–381 (1977)CrossRefGoogle Scholar
  71. R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 100, 55–83 (1999)CrossRefGoogle Scholar
  72. K. Sadananda, A.K. Vasudevan, Fatigue crack growth mechanisms in steels. Int. J. Fatigue 25, 899–914 (2003)CrossRefGoogle Scholar
  73. S. Sakaguchi, N. Murayama, Y. Kodama, & F. Wakai, in Fracture Mechanics of Ceramics: Fracture Fundamentals, High-Temperature Deformation, Damage, and Design, eds. by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai, V. Ya Shevchenko (Springer US, 1992), pp. 509–521Google Scholar
  74. I.N. Sneddon, The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)zbMATHCrossRefGoogle Scholar
  75. D.S. Stone, J.E. Jakes, J. Puthoff, A.A. Elmustafa, Analysis of indentation creep. J. Mater. Res. 25, 611–621 (2010)CrossRefGoogle Scholar
  76. B. Storakers, P.L. Larsson, On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids 42, 307–332 (1994)zbMATHCrossRefGoogle Scholar
  77. S. Suresh, Fatigue of materials (Cambridge University Press, Cambridge, 1998)Google Scholar
  78. B. Taljat, G.M. Pharr, Development of pile-up during spherical indentation of elastic-plastic solids. Int. J. Soilds Struct. 41, 3891–3904 (2004)zbMATHCrossRefGoogle Scholar
  79. Y. Tang, A. Yonezu, N. Ogasawara, N. Chiba, X. Chen, On radial crack and half-penny crack induced by Vickers indentation. Proc. R. Soc. A: Math. Phys. Eng. Sci. 464, 2967–2984 (2008)CrossRefGoogle Scholar
  80. J. Tang, J. Li, J.J. Vlassak, Z. Suo, Fatigue fracture of hydrogels. Extreme Mech. Lett. 10, 24–31 (2017)CrossRefGoogle Scholar
  81. S.H. Teoh, Fatigue of biomaterials: a review. Int. J. Fatigue 22, 825–837 (2000)CrossRefGoogle Scholar
  82. V. Tvergaard, Overload effects in fatigue crack growth by crack-tip blunting. Int. J. Fatigue 27, 1389–1397 (2005)zbMATHCrossRefGoogle Scholar
  83. O.L. Warren, Z. Shan, S.A.S. Asif, E.A. Stach, J.W. Morris Jr., A.M. Minor, In situ nanoindentation in the TEM. Mater. Today 10, 59–60 (2007)CrossRefGoogle Scholar
  84. P.J. Wei, Y.C. Wang, J.F. Lin, Retardation of cyclic indentation creep exhibited in metal alloys. J. Mater. Res. 23, 2650–2656 (2008)CrossRefGoogle Scholar
  85. Z. Xia, W.A. Curtin, B.W. Sheldon, A new method to evaluate the fracture toughness of thin films. Acta Mater. 52, 3507–3517 (2004)CrossRefGoogle Scholar
  86. B. Xu, X. Chen, Determining engineering stress–strain curve directly from the load–depth curve of spherical indentation test. J. Mater. Res. 25, 2297–2307 (2010)CrossRefGoogle Scholar
  87. B. Xu, Z. Yue, Study of the ratcheting by the indentation fatigue method with a flat cylindrical indenter: part I. Experimental study. J. Mater. Res. 21(7), 1793–1797 (2006)CrossRefGoogle Scholar
  88. B. Xu, Z. Yue, Study of the ratcheting by the indentation fatigue method with a flat cylindrical indenter: part II. Finite element simulation. J. Mater. Res. 22, 186–192 (2007)CrossRefGoogle Scholar
  89. B. Xu, B. Zhao, Z. Yue, Investigation of residual stress by the indentation method with the flat cylindrical indenter. J. Mater. Eng. Perform. 15, 299–305 (2006)CrossRefGoogle Scholar
  90. B. Xu, Z. Yue, J. Wang, Indentation fatigue behaviour of polycrystalline copper. Mech. Mater. 39(12), 1066–1080 (2007a)CrossRefGoogle Scholar
  91. B. Xu, X. Wang, Z. Yue, Indentation behavior of polycrystalline copper under fatigue peak overloading. J. Mater. Res. 22, 1585–1592 (2007b)CrossRefGoogle Scholar
  92. B.X. Xu, X.M. Wang, B. Zhao, Z.F. Yue, Study of crystallographic creep parameters of nickel-based single crystal superalloys by indentation method. Mater. Sci. Eng. A 478, 187–194 (2008a)CrossRefGoogle Scholar
  93. B.X. Xu, X.M. Wang, Z.F. Yue, Determination of the internal stress and dislocation velocity stress exponent with indentation stress relaxation test. J. Mater. Res. 23, 2486–2490 (2008b)CrossRefGoogle Scholar
  94. B. Xu, Z. Yue, X. Chen, An indentation fatigue depth propagation law. Scr. Mater. 60(10), 854–857 (2009)CrossRefGoogle Scholar
  95. B. Xu, Z. Yue, X. Chen, Numerical investigation of indentation fatigue on copper polycrystalline. J. Mater. Res. 24(3), 1007–1015 (2009)Google Scholar
  96. B.X. Xu, A. Yonezu, X. Chen, An indentation fatigue strength law. Philos. Mag. Lett. 90(5), 313–322 (2010)CrossRefGoogle Scholar
  97. F. Yang, J.C.M. Li, Impression creep by an annular punch. Mech. Mater. 21, 89–97 (1995)CrossRefGoogle Scholar
  98. F. Yang, J.C.M. Li, Impression test – a review. Mater. Sci. Eng. R. Rep 74, 233–253 (2013)CrossRefGoogle Scholar
  99. W. Yang, S. Mao, J. Yang, T. Shang, H. Song, J. Mabon, W. Swiech, J.R. Vance, Z. Yue, S.J. Dillon, H. Xu, B. Xu, Large-deformation and high-strength amorphous porous carbon nanospheres. Sci. Rep. 6, 24187 (2016)CrossRefGoogle Scholar
  100. A. Yonezu, B. Xu, X. Chen, Indentation induced lateral crack in ceramics with surface hardening. Mater. Sci. Eng. A 507, 226–235 (2009)CrossRefGoogle Scholar
  101. A. Yonezu, B. Xu, X. Chen, An experimental methodology for characterizing fracture of hard thin films under cyclic contact loading. Thin Solid Films 8, 2082–2089 (2010)CrossRefGoogle Scholar
  102. N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 56, 31–42 (2008)CrossRefGoogle Scholar
  103. Y. Zhu, C. Ke, H.D. Espinosa, Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp. Mech. 47, 7 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Earth and Environmental Engineering, Columbia Nanomechanics Research CenterColumbia UniversityNew YorkUSA
  3. 3.Department of Engineering MechanicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations