Properties of Material Interfaces: Dynamic Local Versus Nonlocal

  • Devendra Verma
  • Chandra Prakash
  • Vikas Tomar
Reference work entry


Interfaces in the materials are known entities since last century described as early as in the interfacial excess energy formulations by Gibbs (Boßelmann et al. 2007). The interface effect (or surface effect) is also widely referred to as the interface stress (or surface stress) that consists of two parts, both arise from the distorted atomic structure near the interface (or surface): the first part is the interface (or surface) residual stress which is independent of the deformation of solids, and the second part is the interface (or surface) elasticity which contributes to the stress field related to the deformation. Plastic deformation, in particular, the initial yielding point (i.e., the yield surface), is sensitive to the local stress (or local strain) of a heterogeneous material, which includes both the local (surface/interface) residual stress and local stress–strain relationship. The plastic deformation at the interfaces also considers the tension and compression along the interface and stress mismatch because of the material property differences. In the nanomaterials, the surface and interface stresses become even more important owing to the nanoscale size of the particles and interface areas.


Nanomechanical Raman Spectroscopy Interface GB CZM 


  1. G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks Formed in Brittle Fracture (Armed Services Technical Information Agency, Arlington, 1962)Google Scholar
  2. A. Barua, Y. Horie, M. Zhou, J. Appl. Phys. 111, 054902 (2012a)CrossRefGoogle Scholar
  3. A. Barua, Y. Horie, M. Zhou, Proceedings of the royal society a: mathematical. Phys. Eng. Sci. 468, 3725 (2012b)CrossRefGoogle Scholar
  4. A. Barua, S. Kim, Y. Horie, M. Zhou, J. Appl. Phys. 113, 184907 (2013a)CrossRefGoogle Scholar
  5. A. Barua, S.P. Kim, Y. Horie, M. Zhou, Mater. Sci. Forum 767, 13 (2013b)CrossRefGoogle Scholar
  6. A. Barua, M. Zhou, Model. Simul. Mater. Sci. Eng. 19, 055001 (2011)CrossRefGoogle Scholar
  7. M.J. van den Bosch, P.J.G. Schreurs, M.G.D. Geers, Eng. Fract. Mech. 73, 1220 (2006)CrossRefGoogle Scholar
  8. F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, M. Epple, Thermochim. Acta 463, 65 (2007)CrossRefGoogle Scholar
  9. G.T. Camacho, M. Ortiz, Int. J. Solids Struct. 33, 2899 (1996)CrossRefGoogle Scholar
  10. H. Chai, Int. J. Solids Struct. 40, 6023 (2003)CrossRefGoogle Scholar
  11. H. Chai, Int. J. Fract. 130, 497 (2004)CrossRefGoogle Scholar
  12. H. Chai, M.Y.M. Chiang, J. Mech. Phys. Solids 44, 1669 (1996)CrossRefGoogle Scholar
  13. P.-Y. Chen, A.Y.-M. Lin, J. McKittrick, M.A. Meyers, Acta Biomater. 4, 587 (2008)CrossRefGoogle Scholar
  14. P. Colomban, G. Gouadec, J. Mathez, J. Tschiember, P. Pérès, Compos. A: Appl. Sci. Manuf. 37, 646 (2006)CrossRefGoogle Scholar
  15. C.R. Dandekar, Y.C. Shin, Compos. A: Appl. Sci. Manuf. 42, 355 (2011)CrossRefGoogle Scholar
  16. R. Dingreville, A. Hallil, S. Berbenni, J. Mech. Phys. Solids 72, 40 (2014)MathSciNetCrossRefGoogle Scholar
  17. R. Dingreville, J. Qu, J. Mech. Phys. Solids 56, 1944 (2008)MathSciNetCrossRefGoogle Scholar
  18. D.S. Dugadale, J. Mech. Phys. Solids 8, 100 (1960)CrossRefGoogle Scholar
  19. E. Flores-Johnson, L. Shen, I. Guiamatsia, G.D. Nguyen, Compos. Sci. Technol. 96, 13 (2014)CrossRefGoogle Scholar
  20. M. Gan, V. Tomar, Rev. Sci. Instrum. 85, 013902 (2014)CrossRefGoogle Scholar
  21. B. Gludovatz, S. Wurster, A. Hoffmann, R. Pippan, Int. J. Refract. Met. Hard Mater. 28, 674 (2010)CrossRefGoogle Scholar
  22. A.A. Griffith, Philosophical transactions of the royal society a: mathematical. Phys. Eng. Sci. 221, 163 (1921)CrossRefGoogle Scholar
  23. V.K. Gupta, D.-H. Yoon, H.M. Meyer Iii, J. Luo, Acta Mater. 55, 3131 (2007)CrossRefGoogle Scholar
  24. Z. Hashin, J. Mech. Phys. Solids 39, 745 (1991a)MathSciNetCrossRefGoogle Scholar
  25. Z. Hashin, Trans. ASME 58, 444 (1991b)CrossRefGoogle Scholar
  26. Z. Hashin, J. Mech. Phys. Solids 50, 2509 (2002)MathSciNetCrossRefGoogle Scholar
  27. J.L. Högberg, Int. J. Fract. 141, 549 (2006)CrossRefGoogle Scholar
  28. N. Pagano and G.P. Tandon: Mechanics of Materials, 9, 49 (1990)CrossRefGoogle Scholar
  29. G.R. Irwin, J. Appl. Mech. 24, 361 (1957)Google Scholar
  30. S. Kim, A. Barua, Y. Horie, M. Zhou, J. Appl. Phys. 115, 174902 (2014)CrossRefGoogle Scholar
  31. D.V. Kubair, P.H. Geubelle, Y.Y. Huang, Eng. Fract. Mech. 70, 685 (2002a)CrossRefGoogle Scholar
  32. D.V. Kubair, P.H. Geubelle, Y.Y. Huang, J. Mech. Phys. Solids 50, 1547 (2002b)CrossRefGoogle Scholar
  33. H. Lee, V. Tomar, Comput. Mater. Sci. 77, 131 (2013)CrossRefGoogle Scholar
  34. H. Lee, V. Tomar, Int. J. Plast. 53, 135 (2014)CrossRefGoogle Scholar
  35. A. Levy, J. Mech. Phys. Solids 42, 1087 (1994)MathSciNetCrossRefGoogle Scholar
  36. A. Levy, J. Appl. Mech. 63, 357 (1996)CrossRefGoogle Scholar
  37. A. Levy, J. Appl. Mech. 67, 727 (2000)CrossRefGoogle Scholar
  38. Y.-W. Mai, B.R. Lawn, J. Am. Ceram. Soc. 70, 289 (1987)CrossRefGoogle Scholar
  39. G. Mayer, J. Mech. Behav. Biomed. Mater. 4, 670 (2011)CrossRefGoogle Scholar
  40. A. Needleman, Procedia IUTAM 10, 221 (2014)CrossRefGoogle Scholar
  41. A. Needleman, X.P. Xu, Model. Simul. Mater. Sci. Eng. 1, 111 (1993)CrossRefGoogle Scholar
  42. K. Park, G.H. Paulino, Appl. Mech. Rev. 64, 060802 (2013)CrossRefGoogle Scholar
  43. C. Prakash, H. Lee, M. Alucozai, V. Tomar, Int. J. Fract. 199, 1 (2016)CrossRefGoogle Scholar
  44. J. Qu, Mech. Mater. 14, 269 (1993)CrossRefGoogle Scholar
  45. T. Qu, D. Verma, M. Alucozai, V. Tomar, Acta Biomater. 25, 325 (2015)CrossRefGoogle Scholar
  46. T. Qu, D. Verma, M. Shahidi, B. Pichler, C. Hellmich, V. Tomar, MRS Bull. 40, 349 (2015)CrossRefGoogle Scholar
  47. D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S.-B. Yi, G. Servos, H. Hartwig, Mater. Sci. Eng. A 421, 143 (2006)CrossRefGoogle Scholar
  48. J.H. Rose, J. Ferrante, J.R. Smith, Am. Phys. Soc. 47, 675 (1981)Google Scholar
  49. A.Y. Roy, R. Narashimhan, P.R. Arora, Acta Mater. 47, 1587 (1999)CrossRefGoogle Scholar
  50. O. Samudrala, Y. Huang, A.J. Rosakis, J. Mech. Phys. Solids 50, 1231 (2002)MathSciNetCrossRefGoogle Scholar
  51. O. Samudrala, A.J. Rosakis, Eng. Fract. Mech. 70, 309 (2003)CrossRefGoogle Scholar
  52. C. Shet, N. Chandra, Mech. Adv. Mater. Struct. 11, 249 (2004)CrossRefGoogle Scholar
  53. V. Tvergaard, Eng. Fract. Mech. 70, 1859 (2003)CrossRefGoogle Scholar
  54. V. Tvergaard, J.W. Hutchinson, J. Mech. Phys. Solids 40, 1377 (1992)CrossRefGoogle Scholar
  55. V. Tvergaard, J.W. Hutchinson, J. Mech. Phys. Solids 41, 1119 (1993)CrossRefGoogle Scholar
  56. K.B. Ustinov, R.V. Goldstein, V.A. Gorodtsov, On the modeling of surface and interface elastic effects in case of eigenstrains, in Surface Effects in Solid Mechanics: Models, Simulations and Applications, ed. by H. Altenbach, F. N. Morozov (Springer Berlin Heidelberg, Berlin, 2013), p. 167CrossRefGoogle Scholar
  57. D. Verma, J. Singh, A.H. Varma, V. Tomar, JOM 67, 1694 (2015)CrossRefGoogle Scholar
  58. D. Verma, V. Tomar, Mater Sci Eng C Mater Biol Appl 44, 371 (2014a)CrossRefGoogle Scholar
  59. D. Verma, V. Tomar, J Bionic Eng 11, 360 (2014b)CrossRefGoogle Scholar
  60. D. Verma, V. Tomar, J. Mater. Res. 30, 1110 (2015a)CrossRefGoogle Scholar
  61. D. Verma, V. Tomar, Mater Sci Eng C Mater Biol Appl 49, 243 (2015b)CrossRefGoogle Scholar
  62. Y. Wu, Z. Ling, Z. Dong, Int. J. Solids Struct. 37, 1275 (1999)CrossRefGoogle Scholar
  63. V. Yamakov, E. Saether, D.R. Phillips, E.H. Glaessgen, J. Mech. Phys. Solids 54, 1899 (2006)CrossRefGoogle Scholar
  64. X.A. Zhong, Mech. Adv. Mater. Struct. 6, 1 (1999)CrossRefGoogle Scholar
  65. X.A. Zhong, W.G. Knauss, Trans. ASME 119, 198 (1997)Google Scholar
  66. X.A. Zhong, W. Knauss, Mech. Adv. Mater. Struct. 7, 35 (2000)CrossRefGoogle Scholar
  67. Z. Zhong, S.A. Meguid, J. Elast. 46, 91 (1997)CrossRefGoogle Scholar
  68. X.W. Zhou, N.R. Moody, R.E. Jones, J.A. Zimmerman, E.D. Reedy, Acta Mater. 57, 4671 (2009)CrossRefGoogle Scholar
  69. X.W. Zhou, J.A. Zimmerman, E.D. Reedy, N.R. Moody, Mech. Mater. 40, 832 (2008)CrossRefGoogle Scholar
  70. Y. Zhu, K.M. Liechti, K. Ravi-Chandar, Int. J. Solids Struct. 46, 31 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations