Advertisement

Higher Order Thermo-mechanical Gradient Plasticity Model: Nonproportional Loading with Energetic and Dissipative Components

  • George Z. Voyiadjis
  • Yooseob Song
Reference work entry

Abstract

In this chapter, two cases of thermodynamic-based higher order gradient plasticity theories are presented and applied to the stretch-surface passivation problem for investigating the material behavior under the nonproportional loading condition. This chapter incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. The stored energy of cold work is considered in the development of the recoverable counterpart of the free energy. The main distinction between the two cases is the presence of the dissipative higher order microstress quantities \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \). Fleck et al. (Soc. A-Math. Phys. 470:2170, 2014, ASME 82:7, 2015) noted that \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \) always gives rise to the stress jump phenomenon, which causes a controversial dispute in the field of strain gradient plasticity theory with respect to whether it is physically acceptable or not, under the nonproportional loading condition. The finite element solution for the stretch-surface passivation problem is also presented by using the commercial finite element package ABAQUS/standard (User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence, 2012) via the user-subroutine UEL. The model is validated by comparing with three sets of small-scale experiments. The numerical simulation part, which is largely composed of four subparts, is followed. In the first part, the occurrence of the stress jump phenomenon under the stretch-surface passivation condition is introduced in conjunction with the aforementioned three experiments. The second part is carried out in order to clearly show the results to be contrary to each other from the two classes of strain gradient plasticity models. An extensive parametric study is presented in the third part in terms of the effects of the various material parameters on the stress-strain response for the two cases of strain gradient plasticity models, respectively. The evolution of the free energy and dissipation potentials are also investigated at elevated temperatures. In the last part, the two-dimensional simulation is given to examine the gradient and grain boundary effect, the mesh sensitivity of the two-dimensional model, and the stress jump phenomenon. Finally, some significant conclusions are presented.

Keywords

Higher order gradient plasticity Energetic Dissipative Stress jump Non-proportional loading 

References

  1. Abaqus, User’s Manual (Version 6.12) (Dassault Systemes Simulia Corp., Providence, 2012)Google Scholar
  2. E.C. Aifantis, J. Eng. Mater-T. ASME 106, 4 (1984)CrossRefGoogle Scholar
  3. K.E. Aifantis, J.R. Willis, J. Mech. Phys. Solids 53, 5 (2005)CrossRefGoogle Scholar
  4. B.D. Coleman, M.E. Gurtin, J. Chem. Phys. 47, 2 (1967)CrossRefGoogle Scholar
  5. N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 49, 10 (2001)Google Scholar
  6. N.A. Fleck, J.R. Willis, J. Mech. Phys. Solids 57, 1 (2009a)CrossRefGoogle Scholar
  7. N.A. Fleck, J.R. Willis, J. Mech. Phys. Solids 57, 7 (2009b)Google Scholar
  8. N.A. Fleck, J.R. Willis, Acta Mech. Sinica 31, 4 (2015)CrossRefGoogle Scholar
  9. N.A. Fleck, J.W. Hutchinson, J.R. Willis, P. Roy, Soc. A Math. Phys. 470, 2170 (2014)Google Scholar
  10. N.A. Fleck, J.W. Hutchinson, J.R. Willis, J. Appl. Mech-T. ASME 82, 7 (2015)CrossRefGoogle Scholar
  11. S. Forest, M. Amestoy, C. R. Mecanique 336, 4 (2008)CrossRefGoogle Scholar
  12. S. Forest, R. Sievert, Acta Mech. 160, 1–2 (2003)CrossRefGoogle Scholar
  13. P. Fredriksson, P. Gudmundson, Mat. Sci. Eng. A Struct. 400 (2005)Google Scholar
  14. P. Gudmundson, J. Mech. Phys. Solids 52, 6 (2004)MathSciNetCrossRefGoogle Scholar
  15. M.E. Gurtin, J. Mech. Phys. Solids 56, 2 (2008)Google Scholar
  16. M.E. Gurtin, L. Anand, J. Mech. Phys. Solids 53, 7 (2005)Google Scholar
  17. M.E. Gurtin, L. Anand, J. Mech. Phys. Solids 57, 3 (2009)CrossRefGoogle Scholar
  18. M.E. Gurtin, B.D. Reddy, Contin. Mech. Thermodyn. 21, 3 (2009)CrossRefGoogle Scholar
  19. S. Han, T. Kim, H. Lee, H. Lee, Electronics System-Integration Technology Conference, 2008. ESTC 2008, 2nd (2008)Google Scholar
  20. M.A. Haque, M.T.A. Saif, Acta Mater. 51, 11 (2003)CrossRefGoogle Scholar
  21. J.W. Hutchinson, Acta Mech. Sinica 28, 4 (2012)CrossRefGoogle Scholar
  22. M. Kuroda, V. Tvergaard, Int. J. Plasticity 26, 4 (2010)CrossRefGoogle Scholar
  23. D.B. Liu, Y.M. He, L. Shen, J. Lei, S. Guo, K. Peng, Mat. Sci. Eng. A-Struct. 647 (2015)Google Scholar
  24. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2009), Cambridge, United KingdomGoogle Scholar
  25. F. Mollica, K.R. Rajagopal, A.R. Srinivasa, Int. J. Plast. 17, 8 (2001)CrossRefGoogle Scholar
  26. H.B. Muhlhaus, E.C. Aifantis, Int. J. Solids Struct. 28, 7 (1991)CrossRefGoogle Scholar
  27. L. Nicola, Y. Xiang, J.J. Vlassak, E. Van der Giessen, A. Needleman, J. Mech. Phys. Solids 54, 10 (2006)CrossRefGoogle Scholar
  28. P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, J. Mech. Phys. Solids 48, 3 (2000)CrossRefGoogle Scholar
  29. S.S. Shishvan, L. Nicola, E. Van der Giessen, J. Appl. Phys. 107, 9 (2010)CrossRefGoogle Scholar
  30. S.S. Shishvan, S. Mohammadi, M. Rahimian, E. Van der Giessen, Int. J. Solids Struct. 48, 2 (2011)CrossRefGoogle Scholar
  31. G.Z. Voyiadjis, B. Deliktas, Int. J. Eng. Sci. 47, 11–12 (2009)CrossRefGoogle Scholar
  32. G.Z. Voyiadjis, D. Faghihi, Int. J. Plast. 30–31 (2012)Google Scholar
  33. G.Z. Voyiadjis, D. Faghihi, J. Eng. Mater-T. ASME 136, 4 (2014)CrossRefGoogle Scholar
  34. G.Z. Voyiadjis, Y. Song, Philos. Mag. 97, 5 (2017)CrossRefGoogle Scholar
  35. G.Z. Voyiadjis, D. Faghihi, Y.D. Zhang, Int. J. Solids Struct. 51, 10 (2014)CrossRefGoogle Scholar
  36. G.Z. Voyiadjis, Y. Song, T. Park, J. Eng. Mater-T. ASME 139, 2 (2017)Google Scholar
  37. Y. Xiang, J.J. Vlassak, Acta Mater. 54, 20 (2006)Google Scholar
  38. Y. Xiang, X. Chen, J.J. Vlassak, J. Mater. Res. 20, 9 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations