Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria

  • Sumathi SureshEmail author
Living reference work entry


This chapter reviews recent developments in research related to cellulose biosynthesis by bacteria. The chapter begins with a brief description on the structure of cellulose followed by a glimpse into ecological significance of cellulose production by symbiotic, pathogenic, and free-living bacteria. The biochemical pathway and enzymes leading to extracellular synthesis of cellulose have been discerned. Freeze fracture coupled to immuno-labeling techniques has established the existence of distinct cellulose synthesizing sites in bacteria, plants, and algae known as terminal complexes. Various types of arrangements of terminal complexes on cell surfaces which eventually determine the shape, dimensions, and crystallinity of cellulose have been discussed briefly. Structural, biochemical, and genetic characterization of bacterial cellulose synthase complex have revealed the presence of two core proteins, BscA and BscB, which are responsible for the polymerization of glucose units into glucan chains. BcsC and BscD are vital for the extracellular transport and crystallization of bacterial cellulose. Accessory proteins which regulate the catalytic activity of cellulose synthase, crystallization, and yield of bacterial cellulose have also been discovered. Four categories of bacterial cellulose synthase operons have been recognized in bacteria which encode proteins that participate in the synthesis, extracellular secretion, and crystallization of cellulose. Bioprocess parameters that impact quantity and quality of bacterial cellulose have been analyzed. An overview on applications of bacterial cellulose in food, biomedical devices, electronic products, and remediation of pollutants is also presented. This chapter concludes with thoughts on improving bacterial cellulose production through use of renewable resources and genetically engineered photosynthetic microorganisms.


Acetobacter Applications Bacteria Bacterial cellulose Biomedical Biosynthesis Catalysis c-di-GMP Cellobiose Cellulose synthase Cellulose Crystallization Cyanobacteria Electronic Environment Extracellular Genes Glucan Gluconoacetobacter xylinus Glucose Glycosyltransferase Komagataeibacter xylinus Microfibrils Operon Organization Polymerization Polysaccharide Regulation Secretion Subunit Terminal complexes Transmembrane UDP UDP-glucose Uridyltransferase UTP 


  1. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6CrossRefGoogle Scholar
  2. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473CrossRefGoogle Scholar
  3. Augimeri RV, Varley AJ, Strap JL (2015) Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria. Front Microbiol 6:1282Google Scholar
  4. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRefGoogle Scholar
  5. Bae SO, Sugano Y, Ohi K, Shoda M (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol 65:315–322CrossRefGoogle Scholar
  6. Bassis CM, Visick KL (2010) The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol 192:1269–1278CrossRefGoogle Scholar
  7. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbuchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley-VCH Verlag, Weinheim, pp 31–85Google Scholar
  8. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238CrossRefGoogle Scholar
  9. Brandl MT, Carter MQ, Parker CT, Chapman MR, Huynh S, Zhou Y (2011) Salmonella biofilm formation on Aspergillus niger involves cellulose–chitin interactions. PLoS One 6:e25553CrossRefGoogle Scholar
  10. Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium Aceti. J Chem Soc Trans 49:172–187CrossRefGoogle Scholar
  11. Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A33:1345–1373CrossRefGoogle Scholar
  12. Brown RM Jr (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci A Polym Chem 42:487–495CrossRefGoogle Scholar
  13. Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A 73:143–147CrossRefGoogle Scholar
  14. Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67CrossRefGoogle Scholar
  15. Brown C, Leijon F, Bulone V (2012) Radiometric and spectrophotometric in vitro assays of glycosyl-transferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7:1634–1650CrossRefGoogle Scholar
  16. Cakar F, Özer I, Aytekin AÖ, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13CrossRefGoogle Scholar
  17. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447CrossRefGoogle Scholar
  18. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(D):233–238CrossRefGoogle Scholar
  19. Capdevila JA, Bisbe V, Gasser I, Zuazu J, Olivé T, Fernández F et al (1998) Enterobacter amnigenus. An unusual human pathogen. Enferm Infecc Microbiol Clin 16:364–366Google Scholar
  20. Castro C, Zuluaga R, Alvarez C, Putax J-L, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037Google Scholar
  21. Chau CF, Yang P, Yu CM, Yen GC (2008) Investigation on the lipid and cholesterol lowering abilities of biocellulose. J Agric Food Chem 56:2291–2295CrossRefGoogle Scholar
  22. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  23. Chen H, Brown RJ (1996) Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3:63–75CrossRefGoogle Scholar
  24. Colvin JR (1957) Formation of cellulose microfibrils in a homogenate of Acetobacter xylinum. Arch Biochem Biophys 70:294–295CrossRefGoogle Scholar
  25. Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconoacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027CrossRefGoogle Scholar
  26. Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23CrossRefGoogle Scholar
  27. Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In Balows A, Trueper HG, Dworkin M, Harder W, Schleifer KH (eds), The prokaryotes: a handbook on the biology of bacteria, 2nd ed. Springer-Verlag, New York, USA, p 460–516Google Scholar
  28. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970CrossRefGoogle Scholar
  29. Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  30. Da Re S, Ghigo J (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188:3073–3087CrossRefGoogle Scholar
  31. Davenport A (2010) Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future. Minerva Urol Nefrol 62:29–40Google Scholar
  32. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893CrossRefGoogle Scholar
  33. Deinema MH, Zevenhui LPTM (1971) Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78:42–57CrossRefGoogle Scholar
  34. Deng Y, Nagachar N, Xiao C, Tien M, Kao T-H (2013) Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis. J Bacteriol 195:5072–5083CrossRefGoogle Scholar
  35. DeWulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J Chem Technol Biotechnol 67:376–380CrossRefGoogle Scholar
  36. Eisele S, Ammon HPT, Kindervater R, Gröbe A, Göpel W (1994) Optimized biosensor for whole blood measurements using a new cellulose based membrane. Biosens Bioelectron 9:119–124CrossRefGoogle Scholar
  37. Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923CrossRefGoogle Scholar
  38. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93:439–452CrossRefGoogle Scholar
  39. Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A 104:9047–9051CrossRefGoogle Scholar
  40. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297CrossRefGoogle Scholar
  41. Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13CrossRefGoogle Scholar
  42. Fiedler S, Fussel M, Sattler K (1989) Production and application of bacterial cellulose: 1. A survey on state of research and investigations concerning fermentation kinetics. Zentralbl Mikrobiol 144:473–484Google Scholar
  43. Galperin MY, Koonin EV (2012) Divergence and convergence in enzyme evolution. J Biol Chem 287:21–28CrossRefGoogle Scholar
  44. Garcia B, Latasa C, Solano C, Portillo FG, Gamazo C, Lasa I (2004) Role of GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54:264–277CrossRefGoogle Scholar
  45. Goelzer F, Faria-Tischer PCS, Vitorino JC, Sierakowiski MR, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinus from processed rice bark. J Mater Sci Eng C 29:546–551CrossRefGoogle Scholar
  46. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. J Biomass Bioenergy 55:205–211CrossRefGoogle Scholar
  47. Gray MC, Converse AO, Wyman CE (2003) Sugar monomer and oligomer solubility: data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol 105–108:179–193CrossRefGoogle Scholar
  48. Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell RP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Ltd., Chichester, UK, pp 30–83Google Scholar
  49. Haigler CH, Brown RM Jr (1986) Transport of rosettes from golgi apparatus to plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120CrossRefGoogle Scholar
  50. Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci Eng Inf Technol 2:1–4Google Scholar
  51. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352CrossRefGoogle Scholar
  52. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549CrossRefGoogle Scholar
  53. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5: 45Google Scholar
  54. Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (Part 3). Eng Life Sci 7:35–41CrossRefGoogle Scholar
  55. Hu S-Q, Gao Y-G, Tajima K, Sunagawa N, Zhou Y, Kawano S, Fujiwara T, Yoda T, Shimura D, Satoh Y, Munekata M, Tanaka I, Yao M (2010) Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci U S A 107:17957–17961CrossRefGoogle Scholar
  56. Hungund BS, Gupta SG (2010) Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J Microb Biochem Technol 2:127–133CrossRefGoogle Scholar
  57. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188CrossRefGoogle Scholar
  58. Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66:1677–1681CrossRefGoogle Scholar
  59. Itävaara M, Siika-aho M, Viikari L (1999) J Polym Environ 7: 67–73Google Scholar
  60. Itoh T, Kimura S, Brown RM Jr (2007) Immunogold labeling of cellulose-synthesizing terminal complexes, chapter 14. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 237–256CrossRefGoogle Scholar
  61. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401CrossRefGoogle Scholar
  62. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production-a literature review. J Clean Prod 42:228–240CrossRefGoogle Scholar
  63. Jeihanipour A, Taherzadeh M (2009) Ethanol production from cotton-based waste textiles. Bioresour Technol 100:1007–1010CrossRefGoogle Scholar
  64. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47:400–406CrossRefGoogle Scholar
  65. Johnson DC, Neogi AN (1989) Sheeted products formed from reticulated microbial cellulose. US patent 4863565, Weyerhaeuser CompanyGoogle Scholar
  66. Jones DM, Murray CM, Ketelaar KJ, Thomas JJ, Villalobos JA, Wallace IS (2016) The emerging role of protein phosphorylation as a critical regulatory mechanism controlling cellulose biosynthesis. Front Plant Sci 7:684–695Google Scholar
  67. Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966CrossRefGoogle Scholar
  68. Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150–159CrossRefGoogle Scholar
  69. Kim J, Cai Z, Lee HS, Choi GS, Lee DE, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRefGoogle Scholar
  70. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086CrossRefGoogle Scholar
  71. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  72. Knott BC, Crowley MF, Himmal ME, Zimmer J, Beckham GT (2016) Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory for the dimeric structure of cellulose. Chem Sci 7:3108–3116CrossRefGoogle Scholar
  73. Koo HM, Song SH, Pyun YR, Kim YS (1998) Evidence that a β-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Biosci Biotechnol Biochem 62:2257–2259CrossRefGoogle Scholar
  74. Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75:3281–3288CrossRefGoogle Scholar
  75. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci U S A 94:9091–9095CrossRefGoogle Scholar
  76. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing – HoLiR concept. Biotechnol Bioeng 105:740–747Google Scholar
  77. Krupicka M, Tvaroska I (2009) Hybrid quantum mechanical/molecular mechanical investigation of the β-1,4-galactosyltransferase-I mechanism. J Phys Chem B 113:11314–11319CrossRefGoogle Scholar
  78. Kuga S, Brown RM Jr (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180:345–350CrossRefGoogle Scholar
  79. Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939CrossRefGoogle Scholar
  80. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRefGoogle Scholar
  81. Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72:618–623CrossRefGoogle Scholar
  82. Le Quéré B, Ghigo J-M (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72:724–740CrossRefGoogle Scholar
  83. Lee K-A, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRefGoogle Scholar
  84. Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315CrossRefGoogle Scholar
  85. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119CrossRefGoogle Scholar
  86. Lin FC, Brown RM Jr (1989) Purification of cellulose synthase from Acetobacter xylinum. In: Schuerch C (ed) Cellulose and wood: chemistry and technology. Wiley, New York, pp 473–492Google Scholar
  87. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  88. Lin FC, Brown RM Jr, Drake RR Jr, Haley BE (1990) Identification of the uridine 5′-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem 265:4782–4784Google Scholar
  89. Lin SB, Chen LC, Chen HH (2011) Physical characteristics of surimi and bacterial cellulose composite gel. J Food Process Eng 34:1363–1379CrossRefGoogle Scholar
  90. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRefGoogle Scholar
  91. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119CrossRefGoogle Scholar
  92. Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579CrossRefGoogle Scholar
  93. Matthysse AG, Holmes KV, Gurlitz RHG (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595Google Scholar
  94. Matthysse AG, Thomas DL, White AR (1995a) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081CrossRefGoogle Scholar
  95. Matthysse AG, White S, Lightfoot R (1995b) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075CrossRefGoogle Scholar
  96. Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C et al (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010CrossRefGoogle Scholar
  97. McNamara JT, Morgan JLW, Zimmer JA (2015) Molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921CrossRefGoogle Scholar
  98. Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22:119–137CrossRefGoogle Scholar
  99. Mello LR, Feltrin LT, Neto FPT, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150CrossRefGoogle Scholar
  100. Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194:54–62CrossRefGoogle Scholar
  101. Mohammad SM, Rahman NA, Khalil MS, Abdullah SRS (2014) An overview of biocellulose production using Acetobacter xylinum culture. Adv Biol Res 8:307–313Google Scholar
  102. Mohammadkazemi F, Doosthoseini K, Azin M (2015) Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734) Cellulose. Chem Technol 49:455–462Google Scholar
  103. Moniri M, Moghaddam AB, Azizi S, Rahim RA, Ariff AB, Saas WZ, Navaderi M, Mohamad R (2017) Production and status of bacterial cellulose in biomedical engineering. Nano 7:257–282Google Scholar
  104. Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186CrossRefGoogle Scholar
  105. Morgan JLW, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489–496CrossRefGoogle Scholar
  106. Morgan JLW, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:329–334CrossRefGoogle Scholar
  107. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567CrossRefGoogle Scholar
  108. Niaounakis M (2015) Biopolymers Processing and Products, Elsevier, 225 Wyman street, Waltham, MA 02451, USAGoogle Scholar
  109. Nimeskern L, Avila HM, Sundberg J, Gatenholm P, Muller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21CrossRefGoogle Scholar
  110. Nobles DR, Brown RM Jr (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15:691–701CrossRefGoogle Scholar
  111. Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542CrossRefGoogle Scholar
  112. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852CrossRefGoogle Scholar
  113. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optically transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124:1–133124:3CrossRefGoogle Scholar
  114. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  115. Okuda K, Sekida S (2007) Cellulose–synthesizing complexes of a dinoflagellate and other unique algae, chapter 12. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 199–216CrossRefGoogle Scholar
  116. Olsson RT, Samir MASA, Alvarez GS, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefGoogle Scholar
  117. Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110:17856–17861CrossRefGoogle Scholar
  118. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059CrossRefGoogle Scholar
  119. Patel UD, Suresh S (2008) Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 319:462–469CrossRefGoogle Scholar
  120. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568CrossRefGoogle Scholar
  121. Pérez CD, De’Nobili MD, Rizzo SA, Gerschenson LN, Descalzo AM, Rojas AM (2013) High methoxyl pectin–methyl cellulose films with antioxidant activity at a functional food interface. J Food Eng 116:162–169CrossRefGoogle Scholar
  122. Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA, Romero-Jiménez L, Ramos C, Gallegos M-T, Sanjuan J (2014) Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One 9:e91645CrossRefGoogle Scholar
  123. Persin Z, Maver U, Pivec T, Maver T, Vesel A, Mozitec M, Stana-Kleinschek K (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym 100:55–64CrossRefGoogle Scholar
  124. Rani MU, Appaiah KA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50:755–762CrossRefGoogle Scholar
  125. Raymond L, Revol J-F, Ryan DH, Marchessault RH (1994) In situ synthesis of ferrites in cellulosics. Chem Mater 6:249–255CrossRefGoogle Scholar
  126. Raymond L, Revol J-F, Marchessault RH, Ryan DH (1995) In situ synthesis of ferrites in ionic and neutral cellulose gels. Polymer 36:5035–5043CrossRefGoogle Scholar
  127. Roberts EM, Hardison LK, Brown RM Jr (1986) Production of microbial cellulose. European Patent No. 0186495Google Scholar
  128. Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martínez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125CrossRefGoogle Scholar
  129. Rodríguez A, Sánchez R, Requejo A, Ferrer A (2010) Feasibility of rice straw as a raw material for the production of soda cellulose pulp. J Clean Prod 18:1084–1091CrossRefGoogle Scholar
  130. Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefGoogle Scholar
  131. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol 9:545–557CrossRefGoogle Scholar
  132. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefGoogle Scholar
  133. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–282CrossRefGoogle Scholar
  134. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58Google Scholar
  135. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622CrossRefGoogle Scholar
  136. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:1–8, Article ID 175362CrossRefGoogle Scholar
  137. Saska S, Caminaga RMS, Teixeira LN, Franchi LP, Santos RAD, Gaspar AMM, Oliveira PTD, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253–2266CrossRefGoogle Scholar
  138. Saxena IM, Brown RM Jr (2012) Biosynthesis of bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC press, Taylor and Francis Group, Boca Raton, pp 1–18Google Scholar
  139. Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752CrossRefGoogle Scholar
  140. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129Google Scholar
  141. Shao W, Liu H, Liu X, Wang S, Zhang R (2015) Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 5:4795–4803CrossRefGoogle Scholar
  142. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114CrossRefGoogle Scholar
  143. Shibazaki H, Kuga S, Onabe F, Brown RM Jr (1995) Acid hydrolysis behaviour of microbial cellulose II. Polymer 36:4971–4976CrossRefGoogle Scholar
  144. Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99:415–422CrossRefGoogle Scholar
  145. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRefGoogle Scholar
  146. Silva NHCS, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269CrossRefGoogle Scholar
  147. Small AC, Johnston JH (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J Colloid Interface Sci 331:122–126CrossRefGoogle Scholar
  148. Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808CrossRefGoogle Scholar
  149. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78CrossRefGoogle Scholar
  150. Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(Part 1):1–5CrossRefGoogle Scholar
  151. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V9 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219CrossRefGoogle Scholar
  152. Sourty E, Ryan DH, Marchessault RH (1998) Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 5:5–17CrossRefGoogle Scholar
  153. Standal R, Iversen TG, Coucheron DH, Fjaervik E, Blatny JM, Valla S (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J Bacteriol 176:665–672CrossRefGoogle Scholar
  154. Sun D, Yang J, Wang X (2010a) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292CrossRefGoogle Scholar
  155. Sun D, Yang J, Li J, Yu J, Xu X, Yang X (2010b) Novel Pd–Cu/bacterial cellulose nanofibers: preparation and excellent performance in catalytic denitrification. Appl Surf Sci 256:2241–2244CrossRefGoogle Scholar
  156. Sunagawa N, Tajima K, Hosoda M, Kawano S, Kose R, Satoh Y, Yao M, Dairi T (2012) Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose 19:1989–2001CrossRefGoogle Scholar
  157. Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y, Yao M, Tajima K, Dairi T (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioeng 115:607–612CrossRefGoogle Scholar
  158. Suppakul P, Jutakorn K, Bangchokedee Y (2010) Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. J Food Eng 98:207–213CrossRefGoogle Scholar
  159. Suresh S, Hung Y-T (2006) Treatment of pulp and paper mill wastes, Chapter 10. In: Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) Waste treatment in the process industries. CRC press, Taylor and Francis Group, Boca Raton, pp 453–497Google Scholar
  160. Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955CrossRefGoogle Scholar
  161. Sykes LC, Matthysse AG (1986) Time required for tumor induction by Agrobacterium tumefaciens. Appl Environ Microbiol 52:597–599Google Scholar
  162. Tonouchi N, Tahara N, Tsuchida T, Yoshinaga F, Beppu T (1995) Addition of a small amount of an endoglucanase enhances cellulose production by Acetobacter xylinum. Biosci Biotechnol Biochem 59:805–808CrossRefGoogle Scholar
  163. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose producing Acetobacter strains suitable for agitated culture. J Biosci Biotech Biochem 59:1498–1502CrossRefGoogle Scholar
  164. Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168CrossRefGoogle Scholar
  165. Trovatti E, Freire CSR, Pinto PC, Almeidac IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87CrossRefGoogle Scholar
  166. Tyagi N (2016) Production of extracellular cellulose from molasses by Gluconoacetobacter intermedius SNT-1: optimization of growth medium conditions, characterization and environmental application. PhD thesis, Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, PowaiGoogle Scholar
  167. Tyagi N, Suresh S (2013) Isolation and characterization of cellulose producing bacterial strain from orange pulp. Adv Mater Res 626:475–479CrossRefGoogle Scholar
  168. Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter: optimization and characterization. J Clean Prod 112:71–80CrossRefGoogle Scholar
  169. UI-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447CrossRefGoogle Scholar
  170. Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217:26–30CrossRefGoogle Scholar
  171. Vargas F, Gonzalez Z, Sanchez R, Jimenez L, Rodriguez A (2012) Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging. Bioresources 7:4161–4170Google Scholar
  172. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554CrossRefGoogle Scholar
  173. Vyjayanthi JP, Suresh S (2010) Decolourization of drimarene red dye using palladized bacterial cellulose in a reactor. Water Environ Res 82:601–609CrossRefGoogle Scholar
  174. Vyjayanthi JP, Suresh S (2016) Dechlorination of DDT and its products using palladized bacterial cellulose in a reactor. In: Sorail GA, Hong J (eds) Environmental science and technology, vol 2. American Science Press, Houston, pp 259–265Google Scholar
  175. Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832CrossRefGoogle Scholar
  176. Wang J, Wan Y, Huang Y (2012) Immobilization of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol 6:52–57CrossRefGoogle Scholar
  177. Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72CrossRefGoogle Scholar
  178. World Health Organ (WHO) (2012) Evaluation of certain food additives: seventy-sixth report of the joint FAO/WHO expert committee on food additives. FAO/WHO, Geneva, p 183Google Scholar
  179. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRefGoogle Scholar
  180. Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739CrossRefGoogle Scholar
  181. Xu J, Kim J, Koestler BJ, Choi J-H, Waters CM, Fuqua C (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948CrossRefGoogle Scholar
  182. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRefGoogle Scholar
  183. Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European Patent No. 0396344Google Scholar
  184. Yang J, Sun D, Li J, Yang X, Yu J, Hao Q, Liu W, Liu J, Zou Z, Gu J (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305CrossRefGoogle Scholar
  185. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845CrossRefGoogle Scholar
  186. Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRefGoogle Scholar
  187. Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61:219–224CrossRefGoogle Scholar
  188. Yu WD, Lin WR, Shao XF, Hu ZX, Li RC, Yuan DS (2014) High performance supercapacitor based on Ni3S2/carbon nanofibres and carbon nanofibers electrodes derived from bacterial cellulose. J Power Sources 272:137–143CrossRefGoogle Scholar
  189. Yunoki S, Osada Y, Kono H, Takai H (2004) Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food Sci Technol Res 10:307–313CrossRefGoogle Scholar
  190. Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl 46:111–117CrossRefGoogle Scholar
  191. Zhao Q, Zhao M, Li J, Yang B, Su G, Cui C, Jiang Y (2009) Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll 23:2168–2173CrossRefGoogle Scholar
  192. Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489CrossRefGoogle Scholar
  193. Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε-polylysine. Food Sci Biotechnol 19:1479–1484CrossRefGoogle Scholar
  194. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:452–463CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Environmental Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations