Advertisement

Radioactive Waste Management by Membrane Technique

  • S. B. Mohamed Khalith
  • Aditi Das
  • Kantha Devi ArunachalamEmail author
Living reference work entry
  • 8 Downloads

Abstract

We are living in a modern civilization with the help of a nuclear power facility. But, we are aware about the harmful effects of radionuclide’s produced from nuclear power plants. So, the superiority in the technologies of nuclear waste treatment is prominent. Separation technologies are used to concentrate the radionuclides and prevent the spread of this hazard to the environment. This chapter has three parts: the first part discussed the types of membrane processes and its mechanism, which include ultrafiltration, nanofiltration, reverse osmosis, electrodialysis, diffusion dialysis, etc.; the second part discussed the application and limitation of membrane technique; and the third part discussed the separation of selective and specific radionuclides, including Cs, Sr, Co, I, etc.

Keywords

Radionuclide’s Adsorption Separation Membrane Technique Ultra-filtration Nanofiltration Reverse Osmosis Electro-Dialysis Diffusion Dialysis 

References

  1. Ambashta RD, Sillanpää MET (2012) Membrane purification in radioactive waste management: a short review. J Environ Radioact 105:76–84.  https://doi.org/10.1016/j.jenvrad.2011.12.002CrossRefGoogle Scholar
  2. Arnal JM, Sancho M, Verdú G, Campayo JM, Villaescusa JI (2003a) Treatment of 137Cs liquid wastes by reverse osmosis part I. Preliminary tests. Desalination 154(1):27–33.  https://doi.org/10.1016/S0011-9164(03)00205-4CrossRefGoogle Scholar
  3. Arnal JM, Sancho M, Verdú G, Campayo JM, Gozálvez JM (2003b) Treatment of 137Cs liquid wastes by reverse osmosis part II. Real application. Desalination 154(1):35–42.  https://doi.org/10.1016/S0011-9164(03)00206-6CrossRefGoogle Scholar
  4. Awual R et al (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135.  https://doi.org/10.1016/j.cej.2013.12.072. Elsevier BVCrossRefGoogle Scholar
  5. Banerjee D et al (2015) Potential of metal-organic frameworks for separation of xenon and krypton. Acc Chem Res 48(2):211–219.  https://doi.org/10.1021/ar5003126. American Chemical SocietyCrossRefGoogle Scholar
  6. Bauer B, Gerner FJ, Strathmann H (1988) Development of bipolar membranes. Desalination 68(2–3):279–292.  https://doi.org/10.1016/0011-9164(88)80061-4CrossRefGoogle Scholar
  7. Birdsell SA, Willms RS (1998) Tritium recovery from tritiated water with a two-stage palladium membrane reactor. Fusion Eng Des 39–40:1041–1048.  https://doi.org/10.1016/S0920-3796(98)00144-6. Elsevier BVCrossRefGoogle Scholar
  8. Bloch M et al (2013) No Titleبیبیب’, ثبثبثب, ث ققثق(2), p ثقثقثقثق.  https://doi.org/10.1016/j.jns.2003.09.014CrossRefGoogle Scholar
  9. Cao JG et al (2010) Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration (CPMF). J Radioanal Nucl Chem 285(3):539–546.  https://doi.org/10.1007/s10967-010-0564-yCrossRefGoogle Scholar
  10. Celik E et al (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45(1):274–282.  https://doi.org/10.1016/j.watres.2010.07.060CrossRefGoogle Scholar
  11. Chaalal O, Islam MR (2001) Integrated management of radioactive strontium contamination in aqueous stream systems. J Environ Manag 61(1):51–59.  https://doi.org/10.1006/jema.2000.0399. Academic PressCrossRefGoogle Scholar
  12. Chmielewski AG, Harasimowicz M, Zakrzewska-Trznadel G (1999) Membrane technologies for liquid radioactive waste treatment. Czechoslov J Phys 49(S1):979–985.  https://doi.org/10.1007/s10582-999-1027-y. Springer Science and Business Media LLCCrossRefGoogle Scholar
  13. Chmielewski AG et al (2001) Concentration of low-and medium-level radioactive wastes with three-stage reverse osmosis pilot plant. Sep Sci Technol 36:1117–1127.  https://doi.org/10.1081/SS-100103640CrossRefGoogle Scholar
  14. Choo KH et al (2002) Selective removal of cobalt species using nanofiltration membranes. Environ Sci Technol 36(6):1330–1336.  https://doi.org/10.1021/es010724qCrossRefGoogle Scholar
  15. Fang X et al (2016) Removal of Cs þ, Sr 2 þ, and Co 2 þ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 6–11.  https://doi.org/10.1016/j.net.2016.11.008. Elsevier BVCrossRefGoogle Scholar
  16. FUKASAWA T, FUNABASHI K, KONDO Y (1994) Separation technology for radioactive iodine from off-gas streams of nuclear facilities. J Nucl Sci Technol 31(10):1073–1083.  https://doi.org/10.1080/18811248.1994.9735261CrossRefGoogle Scholar
  17. Gao Y et al (2004) Treatment of the wastewater containing low-level 241 Am using flocculation-microfiltration process. Sep Purif Technol 40(2):183–189.  https://doi.org/10.1016/j.seppur.2004.02.009CrossRefGoogle Scholar
  18. Garrett L (1990) Reverse osmosis applications to low-level radioactive wasteGoogle Scholar
  19. Han M-J, Nam S-T (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55e61CrossRefGoogle Scholar
  20. Ho WSW, Wang B (2002) Strontium removal by new alkyl phenylphosphonic acids in supported liquid membranes with strip dispersion. Ind Eng Chem Res 41(3):381–388.  https://doi.org/10.1021/ie0101339. American Chemical SocietyCrossRefGoogle Scholar
  21. Hobbs DT (1999) Caustic recovery from alkaline nuclear waste by an electrochemical separation process. Sep Purif Technol 15(3):239–253.  https://doi.org/10.1016/S1383-5866(98)00105-1. Elsevier Science LtdCrossRefGoogle Scholar
  22. Hsiue GH et al (1989) Treatment of uranium effluent by reverse osmosis membrane. Desalination 71(1):35–44.  https://doi.org/10.1016/0011-9164(89)87056-0CrossRefGoogle Scholar
  23. Inoue H (2003) Radioactive iodine and chloride transport across a paper membrane bearing trimethylhydroxypropylammonium anion exchange groups. J Membr Sci 222(1–2):53–57.  https://doi.org/10.1016/S0376-7388(03)00171-6. ElsevierCrossRefGoogle Scholar
  24. Inoue H, Kagoshima M (2000) Removal of 125I from radioactive experimental waste with an anion exchange paper membrane. Appl Radiat Isot 52(6):1407–1412.  https://doi.org/10.1016/S0969-8043(99)00168-2CrossRefGoogle Scholar
  25. Inoue H, Kagoshima M (2005) Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane. In: Recent advances in multidisciplinary applied physics. Elsevier, pp 795–803.  https://doi.org/10.1016/B978-008044648-6.50121-X
  26. Ipek U et al (2002) Determination of degradation of radioactivity and its kinetics in aerobic composting. Bioresour Technol 84(3):283–286.  https://doi.org/10.1016/S0960-8524(02)00024-XCrossRefGoogle Scholar
  27. Iwai Y et al (2010) Radiation deterioration of ion-exchange Nafion N117CS membranes. Radiat Phys Chem 79(1):46–51.  https://doi.org/10.1016/j.radphyschem.2009.08.001CrossRefGoogle Scholar
  28. Kocherginsky NM, Zhang YK, Stucki JW (2002) D2EHPA based strontium removal from strongly alkaline nuclear waste. Desalination 144(1–3):267–272.  https://doi.org/10.1016/S0011-9164(02)00326-0CrossRefGoogle Scholar
  29. Le Digabel M et al (2002) Application of gas separation membranes to detritiation systems. Desalination 148(1–3):297–302.  https://doi.org/10.1016/S0011-9164(02)00720-8CrossRefGoogle Scholar
  30. Leiknes T (2009) The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J Environ Sci (China) 21(1):8–12.  https://doi.org/10.1016/s1001-0742(09)60003-6CrossRefGoogle Scholar
  31. Light WG (1980) Decontamination factor calculations for reverse osmosis. Nucl Chem Waste Manage 1(2):99–101.  https://doi.org/10.1016/0191-815X(80)90003-0CrossRefGoogle Scholar
  32. Malekpour A, Millani MR, Kheirkhah M (2008) Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. Desalination 225(1–3):199–208.  https://doi.org/10.1016/j.desal.2007.02.096CrossRefGoogle Scholar
  33. Mathur JN et al (1998) Diffusion dialysis aided electrodialysis process for concentration of radionuclides in acid medium. J Radioanal Nucl Chem 232(1–2):237–240.  https://doi.org/10.1007/BF02383746CrossRefGoogle Scholar
  34. Mohapatra PK et al (2009) Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution. J Hazard Mater 169(1–3):472–479.  https://doi.org/10.1016/j.jhazmat.2009.03.124CrossRefGoogle Scholar
  35. Nandanwar SU et al (2016) Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment – a review. Chem Eng J 306:369–381.  https://doi.org/10.1016/j.cej.2016.07.073. Elsevier BVCrossRefGoogle Scholar
  36. Nichols JP (1971) and Binford, F.T. Fri. STATUS OF NOBLE GAS REMOVAL AND DISPOSAL. United States.  https://doi.org/10.2172/4684282. https://www.osti.gov/servlets/purl/4684282
  37. Osmanlioglu AE (2018) Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl Eng Technol 50(6):886–889.  https://doi.org/10.1016/j.net.2018.04.009. Korean Nuclear SocietyCrossRefGoogle Scholar
  38. Pabby AK (2008) Membrane techniques for treatment in nuclear waste processing: global experience. Membr Technol 2008(11):9–13.  https://doi.org/10.1016/S0958-2118(08)70233-7. Elsevier BVCrossRefGoogle Scholar
  39. Paulenová A, Rajec P, Adamčík P (1998) Micellar ultrafiltration preconcentration of strontium by anionic micellar solution. J Radioanal Nucl Chem 228(1–2):115–117.  https://doi.org/10.1007/BF02387311CrossRefGoogle Scholar
  40. Petek M, Ramey DW, Taylor RD (1981) Tritium separation from light and heavy water by bipolar electrolysis. J Appl Electrochem 11(4):477–488.  https://doi.org/10.1007/BF01132436. Kluwer Academic PublishersCrossRefGoogle Scholar
  41. Rajec P, Paulenová A (1994) Micellar enhanced microfiltration of strontium. J Radioanal Nucl Chem 183(1):109–113.  https://doi.org/10.1007/BF02043122. Kluwer Academic PublishersCrossRefGoogle Scholar
  42. Rana D et al (2013) Radioactive decontamination of water by membrane processes – a review. Desalination 321:77–92.  https://doi.org/10.1016/j.desal.2012.11.007. Elsevier BVCrossRefGoogle Scholar
  43. Raut DR et al (2008) Evaluation of a calix[4]-bis-crown-6 ionophore-based supported liquid membrane system for selective 137Cs transport from acidic solutions. J Membr Sci 310(1–2):229–236.  https://doi.org/10.1016/j.memsci.2007.10.044CrossRefGoogle Scholar
  44. Rudenko LI, Khan VE (2005) Membrane methods for treating liquid radioactive wastes from the shelter to remove transuranic elements. Radiochemistry 47(1):89–92.  https://doi.org/10.1007/s11137-005-0054-1CrossRefGoogle Scholar
  45. Sato I, Kudo H, Tsuda S (2011) Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water. J Toxicol Sci 36:829–834.  https://doi.org/10.2131/jts.36.829CrossRefGoogle Scholar
  46. Shatalov VV et al (2008) Tests of membrane-sorption decontamination of the reservoir cascade of the Techa river. At Energy 105(5):357–366.  https://doi.org/10.1007/s10512-009-9108-3CrossRefGoogle Scholar
  47. Smith BF, Robison TW, Jarvinen GD (1999) Water-soluble metal-binding polymers with ultrafiltration, pp 294–330.  https://doi.org/10.1021/bk-1999-0716.ch020Google Scholar
  48. Szöke S, Pátzay G, Weiser L (2005) Cobalt(III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration. Desalination 175(2):179–185.  https://doi.org/10.1016/j.desal.2004.09.027CrossRefGoogle Scholar
  49. Tongwen X (2002) Electrodialysis processes with bipolar membranes (EDBM) in environmental protection – a review. Resour Conserv Recycl 37(1):1–22.  https://doi.org/10.1016/S0921-3449(02)00032-0. ElsevierCrossRefGoogle Scholar
  50. Tongwen X, Weihua Y (2002) Citric acid production by electrodialysis with bipolar membranes. Chem Eng Process 41(6):519–524.  https://doi.org/10.1016/S0255-2701(01)00175-1CrossRefGoogle Scholar
  51. Zaheri A et al (2010) URANIUM SEPARATION FROM WASTEWATER BY ELECTRODIALYSIS. J Environ Health Sci Eng 7:429–436Google Scholar
  52. Zakrzewska-Trznadel G, Harasimowicz M (2002) Removal of radionuclides by membrane permeation combined with complexation. Desalination 144(1–3):207–212.  https://doi.org/10.1016/S0011-9164(02)00313-2CrossRefGoogle Scholar
  53. Zakrzewska-Trznadel G, Zakrzewska-Trznadel G (2006) PROCEEDINGS Membranes and membrane processes membrane processes for environmental protection: applications in nuclear technology. NUKLEONIKA 51:S101–S111Google Scholar
  54. Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski AG (2001) Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep Purif Technol 22–23:617–625.  https://doi.org/10.1016/S1383-5866(00)00167-2CrossRefGoogle Scholar
  55. Zakrzewska-Trznadel G et al (2009) Reducing fouling and boundary-layer by application of helical flow in ultrafiltration module employed for radioactive wastes processing. Desalination 240(1–3):108–116.  https://doi.org/10.1016/j.desal.2007.10.091.CrossRefGoogle Scholar
  56. Zhang CP et al (2009) Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate. J Hazard Mater 167(1–3):1057–1062.  https://doi.org/10.1016/j.jhazmat.2009.01.104.CrossRefGoogle Scholar
  57. 733 B1 1 BIPOLAR MEMBRANE AND METHOD FOR FABRICATING SUCH BIPOLAR MEMBRANE (n.d.)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. B. Mohamed Khalith
    • 1
  • Aditi Das
    • 2
  • Kantha Devi Arunachalam
    • 1
    Email author
  1. 1.Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and TechnologyKattankulathur, ChennaiIndia
  2. 2.Department of Chemical Engineering, Faculty of Engineering and TechnologySRM institute of Science and TechnologyKattankulathur, ChennaiIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental ScienceNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations