Micro-remediation of Metals: A New Frontier in Bioremediation

  • A. Banerjee
  • M. K. Jhariya
  • D. K. Yadav
  • A. Raj
Living reference work entry


Microbial remediation is an innovative technique which aims toward decontamination of polluted sites through metal immobilization. This approach would make lesser availability of heavy metals to living system. It was found that precipitation and transformation through metabolic activity of microbes are very much useful in this context. Such process reduces the hazards of metal pollution. Use of living organisms for decontamination of pollutions has got holistic approach including various microbes, algae, fungi, higher plant process known as bioremediation. From microbes perspectives, various processes such as promoting indigenous microbial population for decontamination, exogenous input of microbes for decontamination purpose, utilization of microbial strain for sequestering pollutants as well as metal immobilization through microbial biomass are available. Metals have diverse source of contamination by anthropogenic mode. Metal biotransformation is the principle mechanism of microbial remediation for decontaminating environment. It involves processes such as cell membrane transport, physical adsorption, and ion exchange complexation and biosorption. Diverse microbial groups such as plant growth-promoting rhizobacteria or PGPR actively participate in metal decontamination process. Metal-microbe interaction for heavy metal removal includes processes such as bioleaching, bioaccumulations biotransformation, biomineralization, and biosorption. Metal resistance of microbes involves expolymer binding, siderophore and biosurfactant complexation, metal precipitation, and metal-dependent mechanism of metal resistance. Biotransformation of metal cations involves bacterial cell-mediated biologically catalyzed immobilization and solubilization process by diverse group of microbial community.


Bioremediation Interaction Micro-remediation Metal Microbes 


  1. Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367CrossRefGoogle Scholar
  2. Achal V, Pan X, Fu Q, Zhang D (2012a) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201–202:178–184CrossRefGoogle Scholar
  3. Achal V, Pan X, Zhang D (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768CrossRefGoogle Scholar
  4. Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monit Remediat 23(3):85–94CrossRefGoogle Scholar
  5. Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–406CrossRefGoogle Scholar
  6. Alloway BJ (1990) Heavy metals in soils. Blackie and Son Ltd., GlasgowGoogle Scholar
  7. Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153CrossRefGoogle Scholar
  8. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRefGoogle Scholar
  9. Baldwin BR, Peacock AD, Park M, Ogles DM, Istok JD, Mc Kinley JP, Resch CT, White DC (2008) Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water 46:295–304CrossRefGoogle Scholar
  10. Barns SM, Nierzwicki-Bauer SA (1997) Microbial diversity in ocean, surface and subsurface environments. Rev Mineral Geochem 35:35–79Google Scholar
  11. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  12. Blindauer CA, Harrison MD, Robisnson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432CrossRefGoogle Scholar
  13. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286CrossRefGoogle Scholar
  14. Brim H, McFarlan SC, Ferdickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Natl Biotech 8:85–90CrossRefGoogle Scholar
  15. Brim H, Venkateshwaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582CrossRefGoogle Scholar
  16. Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilities Cr(IV) reduction. Microbiology 152:2469–2477CrossRefGoogle Scholar
  17. Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage water of Carnoulès, France. Appl Environ Microbiol 72:551–556CrossRefGoogle Scholar
  18. Cao S, Duan X, Zhao X, Ma J, Dong T, Huang N, Sun C, He B, Wei F (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 472:1001–1009CrossRefGoogle Scholar
  19. Chang YJ, Peacock AD, Lang PE, Stephen JR, McKinley JP, MacNaughton SJ, Hussain AKMA, Saton AM, White D (2001) Diversity and characterization of sulphate reducing bacteria in groundwater uranium mill tailings site. Appl Environ Microbiol 67:3149–3160CrossRefGoogle Scholar
  20. Chen JZ, Tao XC, Xu J, Zhang T, Liu ZL (2005a) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem 40:3675–3679CrossRefGoogle Scholar
  21. Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005b) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf A Physicochem Eng Asp 46:101–107Google Scholar
  22. Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X (2013) Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 34:1364–1371CrossRefGoogle Scholar
  23. Cheng SS, Hsieh TL, Pan PT, Gaop CH, Chang LH, Whang LM, Chang TC (2009) Study on biomonitoring of aged TPH contaminated soil with bioaugmentation and biostimulation (Conference paper). 10th International in situ and on-site bioremediation symposium, Baltimore, 5–8 May 2009Google Scholar
  24. Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186:336–343CrossRefGoogle Scholar
  25. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metals detoxification and homeostatis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  26. D’Annibale A, Leonardi V, Federici E, Baldi F, Zecchini F, Petruccioli M (2007) Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Appl Microbiol Biotechnol 74:1135–1144CrossRefGoogle Scholar
  27. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169Google Scholar
  28. de Jing Y, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207CrossRefGoogle Scholar
  29. Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225CrossRefGoogle Scholar
  30. Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM fungi. Int J Phytoremediation 14(7):643–655CrossRefGoogle Scholar
  31. Dungan RS, Frankenberger WT Jr (2000) Factors affecting the volatalisation of dimethyl selenide by Enterobacter cloacae SLD 1a-1. Soil Biol Biochem 32:1353–1358CrossRefGoogle Scholar
  32. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781CrossRefGoogle Scholar
  33. El-Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386CrossRefGoogle Scholar
  34. Elvin CM, Hardy CM, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani-Gorini A, Rothmann FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 156–158Google Scholar
  35. EPA (2003) Underground storage tanks.
  36. Ercole C, Veglio F, Toro L, Ficara G, Lepidi A (1994) Immobilisation of microbial cells for metal adsorption and desorption. In: Mineral bioprocessing II. Snowboard, UtahGoogle Scholar
  37. Ernst (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274Google Scholar
  38. Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143CrossRefGoogle Scholar
  39. Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:672–674CrossRefGoogle Scholar
  40. Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3:35–48Google Scholar
  41. Favero N, Costa P, Massimino ML (1991) In vitro uptake of cadmium by basidiomycete Pleurotus ostreatus. Biotechnol Lett 10:701–704CrossRefGoogle Scholar
  42. Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328CrossRefGoogle Scholar
  43. Fiset JF, Blais JF, Riverso PA (2008) Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Rev Sci Eau 21(3):283–308Google Scholar
  44. Fredrickson JK, Onstott TC (1996) Microbes deep inside the earth. Sci Am 275:68–73CrossRefGoogle Scholar
  45. Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metal by some Woodrooting fungi. Folia Microbiol 39:115–118CrossRefGoogle Scholar
  46. Gabriel J, Kofronova O, Rychlovsky P, Krenzelok M (1996) Accumulation and effect of cadmium in the wood rotting basidiomycete, Daedalea quercina. Bull Environ Contam Toxicol 57:383–390CrossRefGoogle Scholar
  47. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279CrossRefGoogle Scholar
  48. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  49. Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763CrossRefGoogle Scholar
  50. Gareth ME, Furlong JC (2003) Environmental biotechnology; theory and application. Wiley, ChichesterGoogle Scholar
  51. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414CrossRefGoogle Scholar
  52. Giller KE, Witter E, McGrath SP (1999) Assessing risks of heavy metal toxicity in agricultural soils. Hum Ecol Risk Assess 5:683–689CrossRefGoogle Scholar
  53. Girno E, Masaru N, Chieh-Chen H, Simon S (2002) Microbial heavy metal resistance transposons and plasmids. Potential use for environmental. Biotechnology 2(2):71–82Google Scholar
  54. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  55. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68CrossRefGoogle Scholar
  56. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth–promoting bacteria. Imperial College Press, LondonCrossRefGoogle Scholar
  57. Gomez Jiménez TR, Moliternib E, Rodríguezb L, Fernándezc FJ, Villaseñorc J (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Environ Sci 9:54–59CrossRefGoogle Scholar
  58. Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 8:2267–2272CrossRefGoogle Scholar
  59. Guine V, Martins JMF, Causse B, Durand A, Gaudet JP, Spadini L (2007) Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chem Geol 236:266–280CrossRefGoogle Scholar
  60. Gunasekaran P, Muthukrishnan J, Rajendran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944Google Scholar
  61. Gunawardana WB, Singhal N, Johnson A (2010) Amendments and their combined application for enhanced copper, cadmium, lead uptake by Lolium perenne. Plant Soil 329:283–294CrossRefGoogle Scholar
  62. Guo Z, Megharaj M, Beer M, Ming H, Rahman MM, Wu W, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analysis and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100:3831–3836CrossRefGoogle Scholar
  63. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973Google Scholar
  64. Hadis G, Mehran H, Arezoo T, Mohammad MG (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5(32):5899–5895Google Scholar
  65. Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202CrossRefGoogle Scholar
  66. Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–15CrossRefGoogle Scholar
  67. Hayrynen P, Landaburu JA, Pongracz E, Keiski RL (2012) Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: simultaneous removal of heavy metals from phosphorous rich real wastewaters. Separ Purif Technol 93(1):59–66CrossRefGoogle Scholar
  68. Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027CrossRefGoogle Scholar
  69. Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil–root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysico–chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, pp 267–311Google Scholar
  70. Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187CrossRefGoogle Scholar
  71. Hussein H, Farag S, Kandil K, Moawad H (2005) Resistance and of heavy metals by pseudomonas. Process Biochem 40:955–961CrossRefGoogle Scholar
  72. Irma S, Uzma GRS, Ara T (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2(12):66–73Google Scholar
  73. Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322CrossRefGoogle Scholar
  74. Jin Hee P, Dane L, Periyasamy P, Chhopala G, Bolan N, Jae WC (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid)contaminated soils. J Hazard Mater 185(2–3):549–574Google Scholar
  75. Jjemba PK (2004) Environmental microbiology principles and applications. Science Publishers, EnfieldGoogle Scholar
  76. Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515CrossRefGoogle Scholar
  77. Kamaludeen SPB, Arunkumar R, Avudainayagam S, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Ind J Expt Biol 41:972–985Google Scholar
  78. Kamnev AA, Vander L (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20(4):239–258CrossRefGoogle Scholar
  79. Kang SH, Singh S, Kim JY, Lee W (2007) Mulchandani, A.; Chen, W. Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320CrossRefGoogle Scholar
  80. Kelly DJA, Budd K, Lefebvre DD (2006) The biotransformation of mercury in pH-stat cultures of microfungi. Can J Bot 84:254–260CrossRefGoogle Scholar
  81. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  82. Kim S, Park CB (2013) Bio-inspired synthesis of minerals for energy, environment and medicinal applications. Adv Funct Mater 23:10–25CrossRefGoogle Scholar
  83. Kim TW, Slowing II, Chung PW, Lin VSY (2010) Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS Nano 5:360–365CrossRefGoogle Scholar
  84. Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570CrossRefGoogle Scholar
  85. Komori K, Rivas R, Toda K, Ohtake H (1990) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954CrossRefGoogle Scholar
  86. Kuiters AT, Mulder W (1993) Water–soluble organic matter in forest soils. Plant Soil 152:215–235CrossRefGoogle Scholar
  87. Kumar Sharma R, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266CrossRefGoogle Scholar
  88. Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093Google Scholar
  89. Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Left 10(2):137–142CrossRefGoogle Scholar
  90. Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148:189–199CrossRefGoogle Scholar
  91. Landaburu-Aguirre J, Pongracz E, Sarpola A, Keiski RL (2012) Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration. Separ Purif Technol 88:130–137CrossRefGoogle Scholar
  92. Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120CrossRefGoogle Scholar
  93. Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85CrossRefGoogle Scholar
  94. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253CrossRefGoogle Scholar
  95. Lloyd JR, Mabbett AN, Williams DR, Macaskie LE (2001) Metal reduction by sulphate reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59:327–337CrossRefGoogle Scholar
  96. Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44CrossRefGoogle Scholar
  97. Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289CrossRefGoogle Scholar
  98. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480Google Scholar
  99. Lovley DR, Philips EF, Lonargan DJ (1989) Hydrogen and formate oxidation couple to dissimilatory reduction of iron and manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706Google Scholar
  100. Lovley DR, Philips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  101. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen, nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344CrossRefGoogle Scholar
  102. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  103. Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology. Academic Press, SanDiegoGoogle Scholar
  104. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278CrossRefGoogle Scholar
  105. Marazioti C (1998) Heavy metal tolerance and uptake by soil bacteria. Institute of BioScience and Technology: Cranfield University, CranfieldGoogle Scholar
  106. Mehboob I, Zahir ZA, Arshad M, Tanveer A, Farooq EA (2011) Growth promoting activities of different rhizobium spp. in wheat. Pak J Bot 43:1643–1650Google Scholar
  107. Mejare M, Bulow L (2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73CrossRefGoogle Scholar
  108. Miller RM (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect 103:59–62CrossRefGoogle Scholar
  109. Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222. Scholar
  110. Moffet BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19CrossRefGoogle Scholar
  111. Muhammad, Edyvean (2007) Ability of loofa sponge – immobilized fungal biomass to remote lead ions from aqueous solution. Pak Bot 39(1):231–238Google Scholar
  112. Mulligan CN, Raymond NY, Gibbs BE (2001a) Heavy metal removal from sediments by biosurfactants. J. Hazardous Materials 85:112–125Google Scholar
  113. Narayanan M, Natrajan D (2011) Bioremediation on effluents from magnesite and bauxite mines using Thiobacillus Spp and Pseudomonas Spp. Bioremediation Biodegradation 2(1):115. Scholar
  114. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  115. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199CrossRefGoogle Scholar
  116. Nikunen E, Leinonen R, Kultamaa A (1990) Environmental properties of chemicals. Minist Environ, Environ Protect Dep, Res Rep 91:885–889Google Scholar
  117. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944CrossRefGoogle Scholar
  118. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  119. Perez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341CrossRefGoogle Scholar
  120. Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214CrossRefGoogle Scholar
  121. Pongratz R, Heumann KG (1999) Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102CrossRefGoogle Scholar
  122. Purakayastha T, Chhonkar P (2010) Phytoremediation of heavy metal contaminated soils. Soil Heavy Metals 19:389–429Google Scholar
  123. Ramasamy K (2000) Towards the better management of tannery waste contaminated soils, Conference Proceedings. ACAIR, CanberraGoogle Scholar
  124. Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a mycoremediation approach. Asian J Exp Biol 2(2):342–347Google Scholar
  125. Rani A (2009) Proteomic studies and functional characterization of cadmium resistant bacteria. PhD thesis, GB Pant University of Agriculture & Technology, PantnagarGoogle Scholar
  126. Reith F, Rogers SL, McPhail DC, Weeb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236CrossRefGoogle Scholar
  127. Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506CrossRefGoogle Scholar
  128. Roane TM, Pepper IL (2000) In: Maier RM, Pepper IL, Gerba CB (eds) Microorganisms and metal pollution, in environmental microbiology, vol 55. Academic, London, pp 403–423Google Scholar
  129. Rojas LA, Yanez C, Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6:e17555CrossRefGoogle Scholar
  130. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Letter 529:86–92CrossRefGoogle Scholar
  131. Ross SM (1994) Sources and forms of potentially toxic metals in soil-plant systems. In: Ross SM (ed) Toxic metals in soil-plant system. Wiley, Chichester, pp 3–25Google Scholar
  132. Saluja B, Sharma V (2014) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metalcontaminated soil. Soil Sediment Contam Int J 23(1):1–17CrossRefGoogle Scholar
  133. Sandaa RA, Torsvik V, Enger O (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:87–295CrossRefGoogle Scholar
  134. Sanders O, Rensing I, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by glycerol facilitator GIpF in Escherichia coli. J Bacteriol 179:3365–3367CrossRefGoogle Scholar
  135. Sar P, D’Souza SF (2001) Biosorptive uranium uptake by pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76:1286–1294CrossRefGoogle Scholar
  136. Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650CrossRefGoogle Scholar
  137. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289CrossRefGoogle Scholar
  138. Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4(3):180–187Google Scholar
  139. Silver S (1996) Bacterial resistance to toxic metal ions—a review. Gene 179:9–19CrossRefGoogle Scholar
  140. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefGoogle Scholar
  141. Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental cleanup through pathway engineering. Curr Opin Biotechnol 19:437–444CrossRefGoogle Scholar
  142. Sirianuntapiboon S, Ungkaprasatcha O (2007) Removal of Pb bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Bioresour Technol 98:2749–2757CrossRefGoogle Scholar
  143. Sone Y, Mochizuki Y, Koizawa K, Nakamura R, Pan-Hou H, Itoh T, Kiyono M (2013) Mercurial resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB express 3, article 41Google Scholar
  144. Soriano-Disla JM, Speir TW, Gomez I, Clucas LM, McLaren RG, Navarro-Pedreno J (2010) Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water Air Soil Pollut 213:471–483CrossRefGoogle Scholar
  145. Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6Google Scholar
  146. Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105CrossRefGoogle Scholar
  147. Stamets P (2005) Mycelium running: how mushroom can help save the world. Ten Speed Press, Crown Publishing Group, New YorkGoogle Scholar
  148. Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370CrossRefGoogle Scholar
  149. Surin BP, Cox GB, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani-Gorini A, Rothmann FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 145–149Google Scholar
  150. Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Technol 41:2008–2014CrossRefGoogle Scholar
  151. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204CrossRefGoogle Scholar
  152. Tastan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876CrossRefGoogle Scholar
  153. Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially- mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Rev Mineral 35:225–266Google Scholar
  154. Thavasi R (2011) Microbial biosurfactants: from an environment application point of view. J Bioremed Biodegr 2:104eCrossRefGoogle Scholar
  155. Treeby M, Marschner H, Roemheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant–borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226CrossRefGoogle Scholar
  156. Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai UN, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L) plants. Chemosphere 70:1919–1929CrossRefGoogle Scholar
  157. Tsai YP, You SJ, Pai TY, Chen KW (2005) Effect of cadmium on composition and diversity of bacterial communities in activated sludges. Int Biodeterior Biodegrad 55:285–291CrossRefGoogle Scholar
  158. Turpeinen R (2002) Interactions between metals, microbes and plants – bioremediation of arsenic and lead contaminated soils. Academic dissertation in environmental ecology. Department of Ecological and Environmental Sciences, University of Helsinki, Neopoli, LahtGoogle Scholar
  159. Tyagi M, Fonseca MMRD, Carvalho CCCRD (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefGoogle Scholar
  160. USEPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. US Environmental Protection Agency, Washington, DCGoogle Scholar
  161. USGS (1997) Bioremediation: nature’s way to a cleaner environment.
  162. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338CrossRefGoogle Scholar
  163. Valls M, Atrian S, de Lorenzo V, La F (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665CrossRefGoogle Scholar
  164. Van Aken B, Tehrani R, Schnoor J (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by Methylobacterium populi BJ001T. In: Pirttila AM, Frank AC (eds) Endophytes of forest trees: biology and applications, forestry sciences, vol 80. Springer, Heidelberg, pp 217–234CrossRefGoogle Scholar
  165. Vargas-Garcia MC, Estrella S, Lopez MJ, Moreno J (2009) Bioremediation of heavy metals with microbial isolates. Universidad de Almeria, AlmeriaGoogle Scholar
  166. Vega-Lopez A, Amora-Lazcano E, Lopez-Lopez E, Terron O, Proal-Najera JB (2007) Toxic effects of zinc on anaerobic microbiota from Zimapan reservoir (Mexico). Anaerobe 13:65–73CrossRefGoogle Scholar
  167. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  168. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172CrossRefGoogle Scholar
  169. Vijayraghvan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291CrossRefGoogle Scholar
  170. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in the soil environments. J Soil Sci Plant Nutr 10(3):268–292CrossRefGoogle Scholar
  171. Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173:510–516CrossRefGoogle Scholar
  172. Wenzel WW (2009) Rhizosphere processes and management in plant–assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  173. White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev:503–516Google Scholar
  174. Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527CrossRefGoogle Scholar
  175. Wu S, Cheung K, Luo Y, Wong M (2006a) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135CrossRefGoogle Scholar
  176. Wu CH, Wood TK, Mulchandani A, Chen W (2006b) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134CrossRefGoogle Scholar
  177. Yan G, Viraraghvan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78(3):243–249CrossRefGoogle Scholar
  178. Yin XX, Wang LH, Bai R, Huang H, Sun GX (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223(3):1183–1190CrossRefGoogle Scholar
  179. Zeftawy MAME, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Separ Purif Technol 77(1):120–127CrossRefGoogle Scholar
  180. Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90(2):391–396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Banerjee
    • 1
  • M. K. Jhariya
    • 2
  • D. K. Yadav
    • 2
  • A. Raj
    • 3
  1. 1.Department of Environmental ScienceSarguja UniversityAmbikapurIndia
  2. 2.Department of Farm ForestrySarguja UniversityAmbikapurIndia
  3. 3.Department of Forestry, College of AgricultureI.G.K.VRaipurIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations