Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Automated Neuropsychological Assessment Metrics (ANAM)

  • Tamara McKenzie-HartmanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_9244

Synonyms

ANAM4

Description

The Automated Neuropsychological Assessment Metrics (ANAM) is a computerized assessment of cognitive functioning originally developed by the Department of Defense (DoD). The ANAM was initially developed in 1984 and has undergone multiple revisions. The original version contained over 30 test modules and has four standardized batteries for the assessment of astronauts in space (ANAUT), mild traumatic brain injuries (MILD), moderate to severe traumatic brain injuries (MODERATE), or neurologically normal individuals (STANDARD) (Levinson and Reeves 1997). The ANAM’s modules can be grouped into flexible or standardized fixed batteries for the assessment of cognitive changes secondary to injury, exposure, or environmental factors.

The DoD currently uses the ANAM Version 4.0 (ANAM4), which is the traumatic brain injury military battery. The ANAM4 can be administered in approximately 15–20 min and contains a specialized subset of tests and questionnaires from the...
This is a preview of subscription content, log in to check access.

References

  1. Broglio, S. P., Macciocchi, S. N., & Ferrara, M. S. (2007). Sensitivity of the concussion assessment battery. Neurosurgery, 60(6), 1050–1057.  https://doi.org/10.1227/01.NEU.0000255479.90999.C0.CrossRefPubMedGoogle Scholar
  2. Bruce, J. M., & Echemendia, R. J. (2009). History of multiple self-reported concussions is not associated with reduced cognitive abilities. Neurosurgery, 64(1), 100–106.  https://doi.org/10.1227/01.NEU.0000336310.47513.C8.CrossRefPubMedGoogle Scholar
  3. Bryan, C., & Hernandez, A. M. (2012). Magnitudes of decline on automated neuropsychological assessment metrics subtest scores relative to predeployment baseline performance among service members evaluated for traumatic brain injury in Iraq. The Journal of Head Trauma Rehabilitation, 27(1), 45–54.  https://doi.org/10.1097/HTR.0b013e318238f146.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Coldren, R. L., Russell, M. L., Parish, R. V., Dretsch, M., & Kelly, M. P. (2012). The ANAM lacks utility as a diagnostic or screening tool for concussion more than 10 days following injury. Military Medicine, 177(2), 179–183. Retrieved from http://militarymedicine.amsus.org/doi/pdf/10.7205/MILMED-D-11-00278PubMedCrossRefGoogle Scholar
  5. Cole, W. R., Arrieux, J. P., Schwab, K., Ivins, B. J., Qashu, F. M., & Lewis, S. C. (2013). Test-retest reliability of four computerized neurocognitive assessment tools in an active duty militarypopulation. Archives of Clinical Neuropsychology, 28(7), 732–742.  https://doi.org/10.1093/arclin/act040.CrossRefPubMedGoogle Scholar
  6. Cole, W. R., Arrieux, J. P., Ivins, B. J., Schwab, K. A., & Qashu, F. M. (2017). A comparison of four computerized neurocognitive assessment tools to a traditional neuropsychological test battery in service members with and without mild traumatic brain injury. Archives of Clinical Neuropsychology, 1–18.  https://doi.org/10.1093/arclin/acx036.CrossRefGoogle Scholar
  7. Cooper, D. B., Vanderploeg, R. D., Armistead-Jehle, P., Lewis, J. D., & Bowles, A. O. (2014). Factors associated with neurocognitive performance in OIF/OEF service members with postconcussive complaints in postdeployment clinical settings. Journal of Rehabilitation Research and Development, 51(7), 1023–1034.  https://doi.org/10.1682/JRRD.2013.05.0104.CrossRefPubMedGoogle Scholar
  8. Defense Centers of Excellence (DCoE) for Psychological Health and Traumatic Brain Injury. (2011, May). Indications and conditions for in-theater post-injury neurocognitive assessment tool (NCAT) testing (DCoE Clinical Recommendation). Retrieved from http://dvbic.dcoe.mil/files/resources/DCoE_Clinical_Recommendations_Post_Injury_NCAT_05-31-2011_f.pdf
  9. Defense Health Board. (2016, February). Review of the scientific evidence of using population normative values for post-concussive computerized neurocognitive assessments. Retrieved from http://health.mil/Reference-Center/Reports/2016/02/10/Post-Concussive-Computerized-Neurocognitive-Assessments
  10. Defense Health Board, Neurological/Behavioral Health Subcommittee. (2015, November). Report of the Subcommittee on the Scientific evidence of using population normative values for post-concussive computerized neurocognitive assessments (Decision Brief). Retrieved from http://www.health.mil/Reference-Center/Presentations/2015/11/09/Decision-Brief-NBH-Subcommittee-Automated-Neuropsychological-Assessment-Metrics-4-Tasking
  11. Department of Defense. (2008). National defense authorization act for fiscal year 2008 (HR 4986, section 1673). Retrieved from https://www.congress.gov/bill/110th-congress/house-bill/4986
  12. Echemendia, R. J., Iverson, G. L., McCrea, M., Macciocchi, S. N., Gioia, G. A., Putukian, M., & Comper, P. (2013). Advances in neuropsychological assessment of sport-related concussion. British Journal of Sports Medicine, 47(5), 294–298.  https://doi.org/10.1136/bjsports-2013-092186.CrossRefPubMedGoogle Scholar
  13. Eckner, J. T., Kutcher, J. S., Broglio, S. P., & Richardson, J. K. (2014). Effect of sport-related concussion on clinically measured simple reaction time. British Journal of Sports Medicine, 48(2), 112–118.  https://doi.org/10.1136/bjsports-2012-091579.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Helmick, K. M., Spells, C. A., Malik, S. Z., Davies, C. A., Marion, D. W., & Hinds, S. R. (2015). Traumatic brain injury in the US military: Epidemiology and key clinical and research programs. Brain Imaging and Behavior, 9, 358–366.  https://doi.org/10.1007/s11682-015-9399-z.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hinton-Bayre, A. (2015). Normative versus baseline paradigms for detecting neuropsychological impairment following sports-related concussion. Brain Impairment, 16(2), 9.  https://doi.org/10.1017/BrImp.2015.14.CrossRefGoogle Scholar
  16. Iverson, G. L., & Schatz, P. (2015). Advanced topics in neuropsychological assessment following sport-related concussion. Brain Injury, 29(2), 263–275.  https://doi.org/10.3109/02699052.2014.965214.CrossRefPubMedGoogle Scholar
  17. Ivins, B. J., Kane, R., & Schwab, K. A. (2009). Performance on the automated neuropsychological assessment metrics in a nonclinical sample of soldiers screened for mild TBI after returning from Iraq and Afghanistan: A descriptive analysis. The Journal of Head Trauma Rehabilitation, 24(1), 24–31.  https://doi.org/10.1097/HTR.0b013e3181957042.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kane, R. L., Roebuck-Spencer, T., Short, P., Kabat, M., & Wilken, J. (2007). Identifying and monitoring cognitive deficits in clinical populations using automated neuropsychological assessment metrics (ANAM) tests. Archives of Clinical Neuropsychology, 22(S), 115–126.  https://doi.org/10.1016/j.acn.2006.10.006.CrossRefGoogle Scholar
  19. Kelly, M. P., Coldren, R. L., Parish, R. V., Dretsch, M. N., & Russell, M. L. (2012). Assessment of acute concussion in the combat environment. Archives of Clinical Neuropsychology, 27(4), 375–388.  https://doi.org/10.1093/arclin/acs036.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Levinson, D. M., & Reeves, D. L. (1997). Monitoring recovery from traumatic brain injury using the automated neuropsychological assessment metrics (ANAM V1. 0). Archives of Clinical Neuropsychology, 11(5), 419–420.  https://doi.org/10.1093/arclin/12.2.155.CrossRefGoogle Scholar
  21. Louey, A. G., Cromer, J. A., Schembri, A. J., Darby, D. G., Maruff, P., Makdissi, M., & Mccrory, P. (2014). Detecting cognitive impairment after concussion: Sensitivity of change from baseline and normative data methods using the CogSport/axon cognitive test battery. Archives of Clinical Neuropsychology, 29(5), 432–441.  https://doi.org/10.1093/arclin/acu020.CrossRefPubMedGoogle Scholar
  22. Moser, R. S., Schatz, P., Neidzwski, K., & Ott, S. D. (2011). Group versus individual administration affects baseline neurocognitive test performance. The American Journal of Sports Medicine, 39(11), 2325–2330.  https://doi.org/10.1177/0363546511417114.CrossRefPubMedGoogle Scholar
  23. Norris, J. N., Carr, W., Herzig, T., Labrie, D. W., & Sams, R. (2013). ANAM4 TBI reaction time-based tests have prognostic utility for acute concussion. Military Medicine, 178(7), 767–774.  https://doi.org/10.7205/MILMED-D-12-00493.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reeves, D. L., Winter, K. P., Bleiberg, J., & Kane, R. L. (2007). ANAM® genogram: Historical perspectives, description, and current endeavors. Archives of Clinical Neuropsychology, 22(S1), 15–37.  https://doi.org/10.1016/j.acn.2006.10.013.CrossRefGoogle Scholar
  25. Register-Mihalik, J. K., Guskiewicz, K. M., Mihalik, J. P., Schmidt, J. D., Kerr, Z. Y., & McCrea, M. A. (2013). Reliable change, sensitivity, and specificity of a multidimensional concussion assessment battery: Implications for caution in clinical practice. The Journal of Head Trauma Rehabilitation, 28(4), 274–283.  https://doi.org/10.1097/HTR.0b013e3182585d37.CrossRefPubMedGoogle Scholar
  26. Rice, V. J., Lindsay, G., Overby, C., Jeter, A., Alfred, P. E., Boykin, G. L., … Bateman R. (2011, July). Automated neuropsychological assessment metrics (ANAM) traumatic brain injury (TBI): Human factors assessment (Army Research Lab Report ARL-TN-0440). Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA549141
  27. Roebuck-Spencer, T. M., Reeves, D. L., Bleiberg, J., Cernich, A. N., Schwab, K., Ivins, B., … Warden, D. (2008). Influence of demographics on computerized cognitive testing in a military sample. Military Psychology, 20(3), 187–203.  https://doi.org/10.1080/08995600802118825.CrossRefGoogle Scholar
  28. Roebuck-Spencer, T. M., Vincent, A. S., Schlegel, R. E., & Gilliland, K. (2013). Evidence for added value of baseline testing in computer-based cognitive assessment. Journal of Athletic Training, 48(4), 499–505.  https://doi.org/10.4085/1062-6050-48.3.11.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Suhr, J. A., & Gunstad, J. (2005). Further exploration of the effect of “diagnosis threat” on cognitive performance in individuals with mild head injury. Journal of the International Neuropsychological Society, 11(1), 23–29.  https://doi.org/10.1017/S1355617705050010.CrossRefPubMedGoogle Scholar
  30. Vincent, A. S., Roebuck-Spencer, T., Gilliland, K., & Schlegel, R. (2012). Automated neuropsychological assessment metrics (v4) traumatic brain injury battery: Military normative data. Military Medicine, 177(3), 256.  https://doi.org/10.7205/MILMED-D-11-00289.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG (outside the USA) 2018

Authors and Affiliations

  1. 1.Defense and Veterans Brain Injury CenterJames A. Haley, VA HospitalTampaUSA