Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Resting-State Functional Connectivity MRI (fcMRI)

  • Jared A. NielsenEmail author
  • R. Matthew Hutchison
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_9077

Synonyms

Functional connectivity; Intrinsic functional connectivity; Resting-state connectivity; Resting-state fMRI; Resting-state functional connectivity MRI (fcMRI)

Definition

A method for evaluating the temporal synchronization or correlation between brain regions when a participant passively lies awake in a brain imaging scanner.

Historical Background

In the early 1990s, functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) contrast was invented (Belliveau et al. 1991; Ogawa et al. 1990). The technology exploited inherent differences in the magnetic properties of oxygenated and deoxygenated hemoglobin to provide clinicians and scientists the opportunity to measure brain activity in awake behaving humans endogenously – without the use of chemicals or radiation. A standard fMRI experimental design consists of brief periods of time (e.g., blocks of 20 sec) during which a participant is asked to either perform a behavioral task of interest or a...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360(1457), 1001–1013.  https://doi.org/10.1098/rstb.2005.1634.CrossRefPubMedGoogle Scholar
  2. Belliveau, J. W., Kennedy, D. N., Jr., McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., et al. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716–719.PubMedCrossRefGoogle Scholar
  3. Biswal, B. B. (2012). Resting state fMRI: A personal history. NeuroImage, 62(2), 938–944.  https://doi.org/10.1016/j.neuroimage.2012.01.090.CrossRefPubMedGoogle Scholar
  4. Biswal, B. B. (2015). Resting-state functional connectivity. In A. W. Toga (Ed.), Brain mapping (pp. 581–585). Waltham: Academic Press.CrossRefGoogle Scholar
  5. Buckner, R. L. (2012). The serendipitous discovery of the brain’s default network. NeuroImage, 62(2), 1137–1145.  https://doi.org/10.1016/j.neuroimage.2011.10.035.CrossRefPubMedGoogle Scholar
  6. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.  https://doi.org/10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar
  7. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345.  https://doi.org/10.1152/jn.00339.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.  https://doi.org/10.1038/nn.3423.CrossRefPubMedGoogle Scholar
  9. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.PubMedCrossRefGoogle Scholar
  10. Choi, E. Y., Yeo, B. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108(8), 2242–2263.  https://doi.org/10.1152/jn.00270.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews: Neuroscience, 3(3), 201–215.  https://doi.org/10.1038/nrn755.CrossRefPubMedGoogle Scholar
  12. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.  https://doi.org/10.1073/pnas.0704320104.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.  https://doi.org/10.3389/fnsys.2010.00019.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews: Neuroscience, 8(9), 700–711.  https://doi.org/10.1038/nrn2201.CrossRefPubMedGoogle Scholar
  15. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.  https://doi.org/10.1073/pnas.0504136102.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36.  https://doi.org/10.1089/brain.2011.0008.CrossRefPubMedGoogle Scholar
  17. Gozzi, A., & Schwarz, A. J. (2016). Large-scale functional connectivity networks in the rodent brain. NeuroImage, 127, 496–509.  https://doi.org/10.1016/j.neuroimage.2015.12.017.CrossRefPubMedGoogle Scholar
  18. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.  https://doi.org/10.1073/pnas.0811168106.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in Neuroanatomy, 6, 29.  https://doi.org/10.3389/fnana.2012.00029.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Leopold, D. A., & Maier, A. (2012). Ongoing physiological processes in the cerebral cortex. NeuroImage, 62(4), 2190–2200.  https://doi.org/10.1016/j.neuroimage.2011.10.059.CrossRefPubMedGoogle Scholar
  21. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.  https://doi.org/10.1038/nature06976.CrossRefPubMedGoogle Scholar
  22. Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14(1), 68–78.PubMedCrossRefGoogle Scholar
  23. Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of functional MRI data analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Shulman R. G., Douglas L. R., Kevin L. B., Fahmeed H. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences, 27(8), 489–495.PubMedCrossRefGoogle Scholar
  25. Shehzad, Z., Kelly, A. M., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., et al. (2009). The resting brain: Unconstrained yet reliable. Cerebral Cortex, 19(10), 2209–2229.  https://doi.org/10.1093/cercor/bhn256.CrossRefPubMedGoogle Scholar
  26. Snyder, A. Z., & Raichle, M. E. (2012). A brief history of the resting state: The Washington University perspective. NeuroImage, 62(2), 902–910.  https://doi.org/10.1016/j.neuroimage.2012.01.044.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.  https://doi.org/10.1152/jn.00783.2009.CrossRefPubMedGoogle Scholar
  28. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670.  https://doi.org/10.1038/nmeth.1635.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.  https://doi.org/10.1152/jn.00338.2011.CrossRefPubMedGoogle Scholar
  30. Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews: Neurology, 6(1), 15–28.  https://doi.org/10.1038/nrneurol.2009.198.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Psychiatry and PsychologyHarvard University and Massachusetts General HospitalCambridgeUSA
  2. 2.Biogen Inc.CambridgeUSA