Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Computerized Treatment

  • Erica KaplanEmail author
  • Melissa Shuman-Paretsky
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_9045


Harley and colleagues (1992) defined cognitive rehabilitation as “systematic, functionally-oriented service of therapeutic cognitive activities, based on assessment and understanding of the person’s brain-behavior deficits.” Computerized interventions (CIs) for cognitive rehabilitation employ an electronic medium to either (1) directly improve a specific cognitive ability (restitution) or (2) serve as an external aid that reduces the impact of cognitive dysfunction on daily life (compensation). Today’s computerized interventions, which include computer software, smartphone, and tablet applications and video games, have been praised as a cost-effective and easily accessible alternative to traditional in-person treatments (Kueider et al. 2012).

Historical Background

Lynch (2002) presents a detailed historical timeline of the development and evolution of CIs. According to his comprehensive review, CI began with the popularization of video games and personal computers in the...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Ballesteros, S., Kraft, E., Santana, S., & Tziraki, C. (2015). Maintaining older brain functionality: A targeted review. Neuroscience and Biobehavioral Reviews, 55, 453–477.  https://doi.org/10.1016/j.neubiorev.2015.06.008.CrossRefPubMedGoogle Scholar
  2. Bennett, S. J., Holmes, J., & Buckley, S. (2013). Computerized memory training leads to sustained improvement in visuospatial short-term memory skills in children with down syndrome. American Journal on Intellectual and Developmental Disabilities, 118(3), 179–192.PubMedCrossRefGoogle Scholar
  3. Bogdanova, Y., Yee, M. K., Ho, V. T., & Cicerone, K. D. (2015). Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: A systematic review. The Journal of Head Trauma Rehabilitation.  https://doi.org/10.1097/HTR.0000000000000203.CrossRefGoogle Scholar
  4. Chute, D. L., Conn, G., DiPasquale, M. C., & Hoag, M. (1988). ProsthesisWare: A new class of software supporting the activities of daily living. Neuropsychology, 2(1), 41–57.Google Scholar
  5. Coyle, H., Traynor, V., & Solowij, N. (2015). Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 23(4), 335–359.  https://doi.org/10.1016/j.jagp.2014.04.009.CrossRefGoogle Scholar
  6. Dams-O’Connor, K., & Gordon, W. A. (2010). Role and impact of cognitive rehabilitation. Psychiatric Clinics of North America, 33(4), 893.  https://doi.org/10.1016/j.psc.2010.08.002.CrossRefPubMedGoogle Scholar
  7. Diamond, K., Mowszowski, L., Cockayne, N., Norrie, L., Paradise, M., Hermens, D. F., et al. (2015). Randomized controlled trial of a healthy brain ageing cognitive training program: Effects on memory, mood, and sleep. Journal of Alzheimer’s Disease: JAD, 44(4), 1181–1191.  https://doi.org/10.3233/JAD-142061.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Glisky, E. L., Schacter, D. L., & Tulving, E. (1986). Learning and retention of computer-related vocabulary in memory-impaired patients: Method of vanishing cues. Journal of Clinical and Experimental Neuropsychology, 8(3), 292–312.  https://doi.org/10.1080/01688638608401320.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gomar, J. J., Valls, E., Radua, J., Mareca, C., Tristany, J., del Olmo, F., et al. (2015). A multisite, randomized controlled clinical trial of computerized cognitive remediation therapy for schizophrenia. Schizophrenia Bulletin, 41(6), 1387–1396.  https://doi.org/10.1093/schbul/sbv059.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gross, A. L., Parisi, J. M., Spira, A. P., Kueider, A. M., Ko, J. Y., Saczynski, J. S., et al. (2012). Memory training interventions for older adults: A meta-analysis. Aging & Mental Health, 16(6), 722–734.  https://doi.org/10.1080/13607863.2012.667783.CrossRefGoogle Scholar
  11. Hardy, J. L., Nelson, R. A., Thomason, M. E., Sternberg, D. A., Katovich, K., Farzin, F., & Scanlon, M. (2015). Enhancing cognitive abilities with comprehensive training: A large, online, randomized, active-controlled trial. PloS One.  https://doi.org/10.1371/journal.pone.0134467.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kueider, A. M., Parisi, J. M., Gross, A. L., & Rebok, G. W. (2012). Computerized cognitive training with older adults: A systematic review. PloS One, 7(7), e40588.  https://doi.org/10.1371/journal.pone.0040588.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11), e1001756.  https://doi.org/10.1371/journal.pmed.1001756.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lampit, A., Hallock, H., Suo, C., Naismith, S. L., & Valenzuela, M. (2015a). Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: A pilot study. Frontiers in Aging Neuroscience, 7, 14.  https://doi.org/10.3389/fnagi.2015.00014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lampit, A., Valenzuela, M., & Gates, N. J. (2015b). Computerized cognitive training is beneficial for older adults. Journal of the American Geriatrics Society, 63(12), 2610–2612.  https://doi.org/10.1111/jgs.13825.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lebowitz, M. S., Dams-O’Connor, K., & Cantor, J. B. (2012). Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury. Journal of Rehabilitation Research and Development, 49(10), 1547–1556.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Levinson, R. (1997). The planning and execution assistant and trainer (PEAT). Journal of Head Trauma Rehabilitation, 1–6.Google Scholar
  18. Lynch, W. J. (1990). Cognitive prostheses for the brain impaired. The Journal of Head Trauma Rehabilitation, 5(3), 78.CrossRefGoogle Scholar
  19. Lynch, B. (2002). Historical review of computer-assisted cognitive retraining. The Journal of Head Trauma Rehabilitation, 17(5), 446–457.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Mahendra, N., Kim, E. S., Bayles, K. A., Hopper, T., Cleary, S. J., & Azuma, T. (2005). Evidence-based practice recommendations for working with individuals with dementia: Computer-assisted cognitive interventions (CACIs). Journal of Medical Speech-Language Pathology, 13(4), xxxvi.Google Scholar
  21. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.  https://doi.org/10.1037/a0028228.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Merzenich, M. M., Van Vleet, T. M., & Nahum, M. (2014). Brain plasticity-based therapeutics. Frontiers in Human Neuroscience, 8, 385.  https://doi.org/10.3389/fnhum.2014.00385.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Motter, J. N., Pimontel, M. A., Rindskopf, D., Devanand, D. P., Doraiswamy, P. M., & Sneed, J. R. (2016). Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 189, 184–191.  https://doi.org/10.1016/j.jad.2015.09.022.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.  https://doi.org/10.1038/nature09042.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ponsford, J., Bayley, M., Wiseman-Hakes, C., Togher, L., Velikonja, D., McIntyre, A., et al. (2014). INCOG recommendations for management of cognition following traumatic brain injury, part II: Attention and information processing speed. The Journal of Head Trauma Rehabilitation, 29(4), 321–337.  https://doi.org/10.1097/HTR.0000000000000072.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Rabipour, S., & Raz, A. (2012). Training the brain: Fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79(2), 159–179.  https://doi.org/10.1016/j.bandc.2012.02.006.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Roberts, G., Quach, J., Spencer-Smith, M., Anderson, P. J., Gathercole, S., Gold, L., et al. (2016). Academic outcomes 2 years after working memory training for children with low working memory: A randomized clinical trial. JAMA Pediatrics,  https://doi.org/10.1001/jamapediatrics.2015.4568.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Roche, J. D., & Johnson, B. D. (2014). Cogmed working memory training product review. Journal of Attention Disorders, 18(4), 379–384.  https://doi.org/10.1177/1087054714524275.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., & Zelinski, E. M. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603.  https://doi.org/10.1111/j.1532-5415.2008.02167.x.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sohlberg, M. M., & Mateer, C. A. (1987). Effectiveness of an attention-training program. Journal of Clinical and Experimental Neuropsychology, 9(2), 117–130.  https://doi.org/10.1080/01688638708405352.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Twamley, E. (2016). Cogsmart. Retrieved from www.cogsmart.com.
  32. Vermeij, A., Kessels, R. P., Heskamp, L., Simons, E. M., Dautzenberg, P. L., & Claassen, J. A. (2016). Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment. Brain Imaging and Behavior.  https://doi.org/10.1007/s11682-016-9508-7.CrossRefPubMedCentralGoogle Scholar
  33. Yoo, C., Yong, M. H., Chung, J., & Yang, Y. (2015). Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients. Journal of Physical Therapy Science, 27(8), 2487–2489.  https://doi.org/10.1589/jpts.27.2487.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zelinski, E. M., Spina, L. M., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., & Smith, G. E. (2011). Improvement in memory with plasticity-based adaptive cognitive training: Results of the 3-month follow-up. Journal of the American Geriatrics Society, 59(2), 258–265.  https://doi.org/10.1111/j.1532-5415.2010.03277.x.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zickefoose, S., Hux, K., Brown, J., & Wulf, K. (2013). Let the games begin: A preliminary study using attention process training-3 and lumosity brain games to remediate attention deficits following traumatic brain injury. Brain Injury, 27(6), 707–716.  https://doi.org/10.3109/02699052.2013.775484.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rehabilitation Medicine, Brain Injury Research CenterIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of Rehabilitation Medicine, Mount Sinai School of MedicineNew YorkUSA