Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Basal Ganglia

  • Christina R. MarmarouEmail author
  • Matthew R. Parry
  • Ekaterina Dobryakova
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_298


Basal nuclei


The basal ganglia refer specifically to a group of subcortical structures considered as extrapyramidal motor components. These components include caudate and putamen, substantia nigra, subthalamic nucleus, and globus pallidus (GP). Figure 1 depicts major circuitry within the basal ganglia.
This is a preview of subscription content, log in to check access.

References and Readings

  1. Arsalidou, M., Duerden, E. G., & Taylor, M. J. (2013). The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping, 34(11), 3031–3054.  https://doi.org/10.1002/hbm.22124.CrossRefPubMedGoogle Scholar
  2. Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215.  https://doi.org/10.1016/j.tics.2010.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Averbeck, B. B., Lehman, J., Jacobson, M., & Haber, S. N. (2014). Estimates of projection overlap and zones of convergence within frontal-striatal circuits. Journal of Neuroscience, 34(29), 9497–9505.  https://doi.org/10.1523/JNEUROSCI.5806-12.2014.CrossRefPubMedGoogle Scholar
  4. Baier, B., Karnath, H. O., & Dieterich, M. (2010). Keeping memory clear and stable-the contribution of human basal ganglia and prefrontal cortex to working memory. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(29), 9788–9792.CrossRefGoogle Scholar
  5. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.PubMedCrossRefGoogle Scholar
  6. Bernacer, J., Prensa, L., & Gimenez-Amaya, J. M. (2007). Cholinergic interneurons are differentially distributed in the human striatum. PloS One, 2(11), e1174.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bonelli, R. M., Wenning, G. K., & Kapfhammer, H. P. (2004). Huntington’s disease: Present treatments and future therapeutic modalities. International Clinical Psychopharmacology, 19(2), 51–62.PubMedCrossRefGoogle Scholar
  8. Boyes, J., & Bolam, J. P. (2007). Localization of GABA receptors in the basal ganglia. Progress in Brain Research, 160, 229–243.PubMedCrossRefGoogle Scholar
  9. Brown, R., & Marsden, C. (1991). Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain, 114, 215–231.PubMedGoogle Scholar
  10. Brown, R., Soliveri, P., & Jahanshahi, M. (1998). Executive process in Parkinson’s disease – random number generation and response suppression. Neuropyschologia, 36, 1355–1362.CrossRefGoogle Scholar
  11. Centonze, D., Bernardi, G., & Koch, G. (2007). Mechanisms of disease: Basic-research-driven investigations in humans-the case of hyperkinetic disorders. Nature Clinical Practical Neurology, 3(10), 572–580.CrossRefGoogle Scholar
  12. Chang, H. T. (1988). Dopamine-acetylcholine interaction in the rat striatum: A dual-labeling immunocytochemical study. Brain Research Bulletin, 21, 295–304.PubMedCrossRefGoogle Scholar
  13. DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24.PubMedCrossRefGoogle Scholar
  14. DiFiglia, M., Pasik, P., & Pasik, T. (1976). A Golgi study of neuronal types in the neostriatum of monkeys. Brain Research, 114, 245–256.PubMedCrossRefGoogle Scholar
  15. Dobryakova, E., & Tricomi, E. (2013). Basal ganglia engagement during feedback processing after a substantial delay. Cognitive, Affective, & Behavioral Neuroscience, 13(4), 725–736.  https://doi.org/10.3758/s13415-013-0182-6.CrossRefGoogle Scholar
  16. Grahn, J., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.PubMedCrossRefGoogle Scholar
  17. Grahn, J., & Brett, M. (2008). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45, 54–61.PubMedCrossRefGoogle Scholar
  18. Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509–R511.  https://doi.org/10.1016/S0960-9822(00)00593-5.CrossRefPubMedGoogle Scholar
  19. Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2–3), 69–74.  https://doi.org/10.1016/j.brainresbull.2008.09.013.CrossRefGoogle Scholar
  20. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.  https://doi.org/10.1038/npp.2009.129.CrossRefPubMedGoogle Scholar
  21. Haines, D. (2002). Fundamental neuroscience. New York: Churchill Livingstone.Google Scholar
  22. Hamani, C., Saint-Cyr, J., Fraser, J., Kaplitt, M., & Lozano, A. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127(Pt 1), 4–20.PubMedCrossRefGoogle Scholar
  23. Huntington Study Group. (1996). Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11, 136–142.CrossRefGoogle Scholar
  24. Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2010). Differential activation of the striatum for decision making and outcomes in a monetary task with gain and loss. Cortex, 46(1), 2–14.  https://doi.org/10.1016/j.cortex.2009.02.022.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnson, T., Rosvold, H., & Mishkin, M. (1968). Projections from behaviorally-defined sectors of the prefrontal cortex to the basal ganglia, septum, and diencephalons of the monkey. Experimental Neurology, 21, 20–34.PubMedCrossRefGoogle Scholar
  26. Kern, D., & Kumar, R. (2007). Deep brain stimulation. The Neurologist, 13(5), 237–252.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kim, H. F., & Hikosaka, O. (2013). Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 79(5), 1001–1010.  https://doi.org/10.1016/j.neuron.2013.06.044.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Korenyi, C., & Whittier, J. R. (1967). Drug treatment in 117 cases of Huntington’s disease with special reference to fluphenazine (Prolixin). Psychiatric Quarterly, 41, 203–210.PubMedCrossRefGoogle Scholar
  29. Kotz, S., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45, 982–990.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kotz, S. A., Anwander, A., Axer, H., & Knösche, T. R. (2013). Beyond cytoarchitectonics: The internal and external connectivity structure of the caudate nucleus. PloS One, 8(7), e70141.  https://doi.org/10.1371/journal.pone.0070141.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition. New York: Springer.CrossRefGoogle Scholar
  32. Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F., et al. (1987). Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Research, 413, 179–184.PubMedCrossRefGoogle Scholar
  33. Malapani, C., Rakitin, B., Levy, R., Meck, W., Deweer, B., Dubois, B., et al. (1998). Coupled temporal memories in Parkinson's disease: A dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10, 316–331.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Menguala, E., de las Herasb, S., Erroa, E., Lanciegoa, J. L., & Gimenez-Amaya, J. M. (1999). Thalamic interaction between the input and the output systems of the basal ganglia. Journal of Chemical Neuroanatomy, 16(3), 185–197.Google Scholar
  35. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31(2–3), 236–250.PubMedCrossRefGoogle Scholar
  36. Nagatsu, T., & Sawada, M. (2007). Biochemistry of postmortem brains in Parkinson’s disease: Historical overview and future prospects. Journal of Neural Transmission, Supplement, 72, 113–120.CrossRefGoogle Scholar
  37. Pahwa, R. (2006). Understanding Parkinson’s disease: An update on current diagnostic and treatment strategies. Journal of the American Medical Directors Association, 7(7 Suppl. 2), 4–10.PubMedGoogle Scholar
  38. Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal and temporal lobe lesions in man. Neuropsychologia, 20, 601–604.CrossRefGoogle Scholar
  39. Rosvold, H. (1972). The frontal lobe system: Cortical-subcortical interrelationships. Acta Neurobiologica Experimentalis (Warsaw), 32, 439–460.Google Scholar
  40. Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 51(2), 145–160.  https://doi.org/10.1016/j.brainresrev.2005.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Seger, C. a. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32(2), 265–278.  https://doi.org/10.1016/j.neubiorev.2007.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shao, J., & Diamond, M. I. (2007). Polyglutamine diseases: Emerging concepts in pathogenesis and therapy. Human Molecular Genetics, 15(16), R115–R123. Spec No 2.CrossRefGoogle Scholar
  43. Shohamy, D. (2011). Learning and motivation in the human striatum. Current Opinion in Neurobiology, 21(3), 408–414.  https://doi.org/10.1016/j.conb.2011.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Smits-Bandstra, S., & De Nil, L. (2007). Sequence skill learning in persons who stutter: Implications for cortico- striato-thalamo-cortical dysfunction. Journal of Fluency Disorders, 32(4), 251–278.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Taylor, A., Saint-Cyr, J., & Lang, A. (1986). Frontal lobe dysfunction in Parkinson’s disease: The cortical focus of neostriatal outflow. Brain, 109, 845–883.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Tricomi, E., & Fiez, J. a. (2008). Feedback signals in the caudate reflect goal achievement on a declarative memory task. NeuroImage, 41(3), 1154–1167.  https://doi.org/10.1016/j.neuroimage.2008.02.066.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. The European Journal of Neuroscience, 29(11), 2225–2232.  https://doi.org/10.1111/j.1460-9568.2009.06796.x.CrossRefPubMedPubMedCentralGoogle Scholar
  49. West, R., Ergis, A., Winocur, G., & Saint-Cyr, J. (1998). The contribution of impaired working memory monitoring to performance of the self-ordered pointing task in normal aging and Parkinson’s disease. Neuropsychology, 12, 546–554.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christina R. Marmarou
    • 1
    Email author
  • Matthew R. Parry
    • 1
  • Ekaterina Dobryakova
    • 2
  1. 1.NeurosurgeryVirginia Commonwealth UniversityRichmondUSA
  2. 2.Traumatic Brain Injury ResearchKessler FoundationWest OrangeUSA