Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Dorsolateral Prefrontal Cortex

  • Nicole C. R. McLaughlinEmail author
  • Paul Malloy
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1887


The dorsolateral prefrontal cortex (DLPFC) is located on the convexity of the prefrontal cortex, superior to orbital frontal cortex and anterior to the premotor cortex. Architectonically, it is composed of granular neurons distinct from the pyramidal cells of the adjacent motor cortex. The DLPFC includes at least Brodmann areas 9 and 46, the areas that are homologous to those surrounding the principal sulcus in lower primates, which have been shown to be important in working memory (WM) function (see below). Some researchers include other frontal zones in the DLPFC, including parts of Brodmann areas 8 through 12, 45, 46, and 47, though 44, 45, and 47/12 have also been characterized as ventrolateral prefrontal cortex (Diamond 2002).

Dendrites in the DLPFC reach full maturity by the age of 12 months, plateauing in length until at least age 27 years (Diamond 2002). Glucose metabolism also reaches adult levels by 12 months. However, synaptic density continues to decrease,...

This is a preview of subscription content, log in to check access.

References and Reading

  1. Abbruzzese, M., Ferri, S., & Scarone, S. (1995). Wisconsin Card Sorting Test performance in obsessive-compulsive disorder: No evidence for involvement of dorsolateral prefrontal cortex. Psychiatry Research, 58(1), 37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Altshuler, L., Bookheimer, S., Townsend, J., Proenza, M. A., Sabb, F., Mintz, J., et al. (2008). Regional brain changes in bipolar I depression: A functional magnetic resonance imaging study. Bipolar Disorders, 10(6), 708–717.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Basso, D., Lotze, M., Vitale, L., Ferreri, F., Bisiacchi, P., Olivetti Belardinelli, M., et al. (2006). The role of prefrontal cortex in visuo-spatial planning: A repetitive TMS study. Experimental Brain Research, 171(3), 411–415.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Brooks, J. O., 3rd, Bonner, J. C., Rosen, A. C., Wang, P. W., Hoblyn, J. C., Hill, S. J., et al. (2009). Dorsolateral and dorsomedial prefrontal gray matter density changes associated with bipolar depression. Psychiatry Research, 172(3), 200–204.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6(1), 39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cummings, J. L. (1994). Frontal-subcortical circuits and human behavior. Archives of Neurology, 8, 873–880.Google Scholar
  7. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122(Pt 10), 1973–1987.PubMedCrossRefPubMedCentralGoogle Scholar
  8. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. K. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 466–503). New York: Oxford University Press.CrossRefGoogle Scholar
  10. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1991). Investigating a network model of word generation with positron emission tomography. Proceedings of the Biological Sciences, 244(1310), 101–106.CrossRefGoogle Scholar
  11. Gansler, D. A., Fucetola, R., Krengel, M., Stetson, S., Zimering, R., & Makary, C. (1998). Are there cognitive subtypes in adult attention deficit/hyperactivity disorder? Journal of Nervous and Mental Disease, 186(12), 776–781.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Goghari, V. M., Sponheim, S. R., & MacDonald, A. W., 3rd. (2010). The functional neuroanatomy of symptom dimensions in schizophrenia: A qualitative and quantitative review of a persistent question. Neuroscience and Biobehavioral Reviews, 34(3), 468–486.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Goldman-Rakic, P. S., & Leung, H.-C. (2002). Functional architecture of the dorsolateral prefrontal cortex. In D. T. K. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 85–95). New York: Oxford University Press.CrossRefGoogle Scholar
  14. Hassel, S., Almeida, J. R., Kerr, N., Nau, S., Ladouceur, C. D., Fissell, K., et al. (2008). Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: No associations with psychotropic medication load. Bipolar Disorders, 10(8), 916–927.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jaracz, J. (2008). The anatomy of depression in light of evidence from neuroimaging studies. Psychiatria Polska, 42(6), 875–888.PubMedPubMedCentralGoogle Scholar
  16. Jones-Gottman, M., & Milner, B. (1977). Design fluency: The invention of non-sense drawings after focal cortical lesions. Neuropsychologia, 15, 653–674.CrossRefGoogle Scholar
  17. Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201(2), 239–243.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kondo, H., Osaka, N., & Osaka, M. (2004). Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. NeuroImage, 23(2), 670–679.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kostopoulos, P., & Petrides, M. (2003). The mid-ventrolateral prefrontal cortex: Insights into its role in memory retrieval. European Journal of Neuroscience, 17(7), 1489–1497.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kumari, V., Peters, E. R., Fannon, D., Antonova, E., Premkumar, P., Anilkumar, A. P., et al. (2009). Dorsolateral prefrontal cortex activity predicts responsiveness to cognitive-behavioral therapy in schizophrenia. Biological Psychiatry, 66(6), 594–602.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Malloy, P., & Duffy, J. (1994). The frontal lobes in neuropsychiatric disorders. In F. Boller, D. P. Salmon, & J. M. Hamilton (Eds.), Handbook of neuropsychology. New York: Elsevier.Google Scholar
  22. Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., et al. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48(2), 99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  23. McLaughlin, N. C. R., Moore, D. W., Fulwiler, C., Bhadelia, R., & Gansler, D. A. (2009). Differential contributions of lateral prefrontal cortex regions to visual memory processes. Brain Imaging and Behavior, 3(2), 202–211.CrossRefGoogle Scholar
  24. Nakao, T., Nakagawa, A., Nakatani, E., Nabeyama, M., Sanematsu, H., Yoshiura, T., et al. (2009). Working memory dysfunction in obsessive-compulsive disorder: A neuropsychological and functional MRI study. Journal of Psychiatric Research, 43(8), 784–791.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Petrides, M. (1994). Frontal lobes and behaviour. Current Opinion in Neurobiology, 4(2), 207–211.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Petrides, M. (2000). Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. Journal of Neuroscience, 20(19), 7496–7503.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Potkin, S. G., Turner, J. A., Brown, G. G., McCarthy, G., Greve, D. N., Glover, G. H., et al. (2009). Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study. Schizophrenia Bulletin, 35(1), 19–31.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821–824.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ravizza, S. M., & Carter, C. S. (2008). Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia, 46(12), 2924–2935.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ruff, R. M., Allen, C. C., Farrow, C. E., Niemann, H., & Wylie, T. (1994). Figural fluency: Differential impairment in patients with left versus right frontal lobe lesions. Archives of Clinical Neuropsychology, 9(1), 41–55.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Saint-Cyr, J. A., Bronstein, Y. L., & Cummings, J. L. (2002). Neurobehavioral consequences of neurosurgical treatments and focal lesions of frontal-subcortical circuits. In D. T. K. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 408–427). New York: Oxford University Press.CrossRefGoogle Scholar
  32. Seidman, L. J., Valera, E. M., Makris, N., Monuteaux, M. C., Boriel, D. L., Kelkar, K., et al. (2006). Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biological Psychiatry, 60(10), 1071–1080.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Shafritz, K. M., Kartheiser, P., & Belger, A. (2005). Dissociation of neural systems mediating shifts in behavioral response and cognitive set. NeuroImage, 25(2), 600–606.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Stuss, D. T., Alexander, M. P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., et al. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4(3), 265–278.PubMedPubMedCentralGoogle Scholar
  35. Stuss, D. T., Alexander, M. P., Floden, D., Binns, M. A., Levine, B., McIntosh, A. R., et al. (2002). Fractionation and localization of distinct frontal lobe processes: Evidence from focal lesions in humans. In D. T. K. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function. New York: Oxford University Press.CrossRefGoogle Scholar
  36. van den Heuvel, O. A., Remijnse, P. L., Mataix-Cols, D., Vrenken, H., Groenewegen, H. J., Uylings, H. B., et al. (2009). The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain, 132(Pt 4), 853–868.PubMedPubMedCentralGoogle Scholar
  37. Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43(2), 114–124.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Yeo, R. A., Hill, D. E., Campbell, R. A., Vigil, J., Petropoulos, H., Hart, B., et al. (2003). Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 42(3), 303–310.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Yurgelun-Todd, D. A., Gruber, S. A., Kanayama, G., Killgore, W. D., Baird, A. A., & Young, A. D. (2000). fMRI during affect discrimination in bipolar affective disorder. Bipolar Disorders, 2(3 Pt 2), 237–248.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Zamboni, G., Huey, E. D., Krueger, F., Nichelli, P. F., & Grafman, J. (2008). Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology, 71(10), 736–742.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Butler Hospital Alpert Medical School of Brown UniversityProvidenceUSA
  2. 2.Department of Psychiatry and Human BehaviorBrown UniversityProvidenceUSA