Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Grooved Pegboard Test

  • Brad MerkerEmail author
  • Kenneth Podell
  • Melissa Wingate
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_187




The GPT assesses eye-hand coordination and motor speed and thus requires sensory motor integration and a high level of motor processing (Roy and Square-Storer 1994). It is considered a more complex motor task than others such as grip strength or finger tapping. As such, it requires more effort and is more sensitive to psychomotor speed (Mitrushina et al. 2005). The test has been used extensively for identifying lateralized impairment such as that in Parkinson’s disease (Demakis et al. 2002). In addition, it has been found to be sensitive in detecting general slowing due to medication or disease progression (Tiffin 1968) and used to evaluate cognitive and motor slowing in bipolar disorder (Wilder-Willis et al. 2001), HIV infection (Honn et al. 1999), and other conditions of interest to neuropsychologists.

The test apparatus consists of a square metal surface (10.1 cm2) with a 5 × 5 matrix of keyhole-shaped holes in various orientations. The task requires the...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Ashendorf, L., Vanderslice-Barr, J. L., & McCaffrey, R. J. (2009). Motor tests and cognition in health older adults. Applied Neuropsychology, 16, 171–176.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Biddle, C. M., Fazio, R. L., Dyshniku, F., & Denney, R. L. (2016). Effects of handcuffs on neuropsychological testing: Implications for criminal forensic evaluations. Applied Neuropsychology: Adult.  https://doi.org/10.1080/23279095.2016.1247093.CrossRefGoogle Scholar
  3. Bornstein, R. A. (1985). Normative data on selected neuropsychological measures from a nonclinical sample. Journal of Clinical Psychology, 41, 651–659.CrossRefGoogle Scholar
  4. Bornstein, R. A. (1986). Normative data on intermanual differences on three tests of motor performance. Journal of Clinical and Experimental Neuropsychology, 8, 12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bornstein, R. A., Paniak, C., & O’Brien, W. (1987). Preliminary data on classification of normal and brain-damaged elderly subjects. The Clinical Neuropsychologist, 1(4), 315–323.CrossRefGoogle Scholar
  6. Brown, S. G., Roy, E. A., Rohr, L. E., Snider, B. R., & Bryden, P. J. (2004). Preference and performance measures of handedness. Brain and Cognition, 55(2), 283–285.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bryden, P. J., & Roy, E. A. (2005). A new method of administering the grooved pegboard test: Performance as a function of handedness and sex. Brain and Cognition, 58, 258–268.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Demakis, G.J., Mercury, M.G., Sweet, J.J., Rezak, M., Eller, T., & Vergenz, S. (2002). Motor and cognitive sequelae of unilateral pallidotomy in intractable Parkinson’s disease: Electronic measurement of motor steadiness is a useful outcome measure. Journal of Clinical and Experimental Neuropsychology, 24(5), 655–663.Google Scholar
  9. Dodrill, C. B. (1979). Sex differences on the Halstead-Reitan neuropsychological battery and on other neuropsychological measures. Journal of Clinical Psychology, 35(2), 236–241.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Fouty, H. E., McWaters, A. R., Sanchez, H. C., Mills, R. A., Brandon, B. M., & Weitzner, D. S. (2015). Effect of left-hand peg placement direction on the grooved pegboard test. Applied Neuropsychology: Adult, 22, 332–334.CrossRefGoogle Scholar
  11. Harley, J. P., Leuthold, C. A., Matthews, C. G., & Bergs, L. E. (1980). Wisconsin neuropsychological test battery T-score norms for older veterans administration medical center patients. Madison: Department of Neurology, University of Wisconsin Medical School.Google Scholar
  12. Heaton, R. K., Grant, I., & Matthews, C. G. (1986). Differences in neuropsychological test performance associated with age, education, and sex. In I. Grant & K. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders. New York: Oxford University Press.Google Scholar
  13. Heaton, R. K., Grant, I., & Matthews, C. (1991). Comprehensive norms for an expanded halstead-reitan neuropsychological battery: Demographic corrections, research findings, and clinical applications. Odessa: Psychological Assessment Resources.Google Scholar
  14. Honn, V. J., Para, M. F., Whitacre, C. C., & Bornstein, R. A. (1999). Effect of exercise on neuropsychological performance in asymptomatic HIV infection. AIDS and Behavior, 3(1), 67–74.CrossRefGoogle Scholar
  15. Kelland, D. Z., & Lewis, R. F. (1994). Evaluation of the reliability and validity of the repeatable cognitive-perceptual-motor battery. The Clinical Neuropsychologist, 8, 295–308.CrossRefGoogle Scholar
  16. Klove, H. (1963). Clinical neuropsychology. In F. M. Forster (Ed.), The medical clinics of North America (pp. 1647–1658). New York: WB Saunders.Google Scholar
  17. Lewis, R., & Kupke, T. (1992). Intermanual differences on skilled and unskilled motor tasks in nonlateralized brain dysfunction. The Clinical Neuropsychologist, 6, 374–382.CrossRefGoogle Scholar
  18. Matthews, C. G., & Klove, H. (1964). Instruction manual for the adult neuropsychology test battery. Madison: University of Wisconsin Medical School.Google Scholar
  19. Mitrushina, M., Boone, K. B., Razani, J., & D’Elia, L. F. (2005). Handbook of normative data for neuropsychological assessment (2nd ed.). New York: Oxford University Press.Google Scholar
  20. Peters, M., & Campagnaro, P. (1996). Do women really excel over men in manual dexterity. Journal of Experimental Psychology: Human Perception and Performance, 22, 1107–1112.Google Scholar
  21. Roy, E. A., & Square-Storer, P. A. (1994). Neuropsychology of movement sequencing disorders and apraxia. In D. W. Zaidel (Ed.), Neuropsychology. St. Louis: Academic.Google Scholar
  22. Ruff, R. M., & Parker, S. B. (1993). Gender and age specific changes in motor speed and eye-hand coordination in adults: Normative values for the finger tapping and grooved pegboard tests. Perceptual and Motor Skills, 76, 1219–1230.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Schmidt, S. L., Olivereira, R. M., Rocha, F. B., & Abreu-Villaca, Y. (2000). Influences of handedness and gender on the grooved pegboard test. Brain and Cognition, 44, 445–454.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Thompson, L. L., Heaton, R. K., Matthews, C. G., & Grant, I. (1987). Comparison of preferred and nonpreferred hand performance on four neuropsychological motor tasks. The Clinical Neuropsychologist, 1(4), 324–334.CrossRefGoogle Scholar
  25. Tiffin, J. (1968). Purdue pegboard examiner’s manual. Rosemont: London House.Google Scholar
  26. Wilder-Willis, K. E., Sax, K. W., Rosenberg, H. L., Fleck, D. E., Shear, P. K., & Strakowski, S. M. (2001). Persistent attentional dysfunction in remitted bipolar disorder. Bipolar Disorders, 2, 58–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henry Ford Health SystemsDetroitUSA
  2. 2.Houston Methodist HospitalHoustonUSA
  3. 3.Neuropsychology, The Chicago School of Professional PsychologyChicagoUSA