Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Antihistamines

  • Maya BalamaneEmail author
  • Stephanie A. Kolakowsky-Hayner
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1628

Synonyms

Histamine antagonist; Inverse histamine agonists

Definition

Antihistamines have multiple clinical indications including allergic conditions (rhinitis, dermatoses, atopic dermatitis, contact dermatitis, allergic conjunctivitis, hypersensitivity reactions to drugs, mild transfusion reactions, and urticaria), chronic idiopathic urticaria, motion sickness, vertigo, and insomnia. Antihistamines are most commonly used to treat allergies; H1 receptor inverse agonists typically reduce swelling and vasodilation within the nasal area. H1 receptor antagonists include cetirizine, diphenhydramine also known as Benadryl, desloratadine, doxylamine, ebastine, fexofenadine, loratadine, pheniramine, and promethazine. H2 inverse agonists reduce gastric acid and are used to treat ulcers and reflux. H2 receptor antagonists include cimetidine, famotidine, lafutidine, nizatidine, ranitidine, and roxatidine. H3 and H4receptor antagonists are experimental in nature and are being investigated for...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Hindmarch, I., & Shamsi, Z. (1999). Antihistamines: Models to assess sedative properties, assessment of sedation, safety and other side-effects. Clinical & Experimental Allergy, 29, 133–142.CrossRefGoogle Scholar
  2. Matsushita, A., Seike, M., Okawa, H., Kadawaki, Y., & Ohtsu, H. (2012). Advantages of histamine H4 receptor antagonist usage with H1 receptor antagonist for the treatment of murine allergic contact dermatitis. Experimental Dermatology, 21(9), 714–7155.PubMedCrossRefGoogle Scholar
  3. Parsons, M., & Ganellin, C. (2006). Histamine and its receptors. British Journal of Pharmacology, 147, S127–S135.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Theunissen, E., Vermeeren, A., van Oers, A., van Maris, I., & Ramaekers, J. (2004). A dose-ranging study of the effects of mequitazine on actual driving, memory and psychomotor performance as compared to dexchlorpheniramine, cetirizine and placebo. Clinical & Experimental Allergy, 34(2), 250–258.CrossRefGoogle Scholar
  5. Thurmond, R. L. (2015). The histamine H4 receptor: From orphan to the clinic. Frontiers in Pharmacology, 6, 65.PubMedPubMedCentralCrossRefGoogle Scholar
  6. van Ruitenbeek, P., Vermeeren, A., Smulders, F., Sambeth, A., & Riedel, W. (2009). Histamine H1 receptor blockade predominantly impairs sensory processes in human sensorimotor performance. British Journal of Pharmacology, 157(1), 76–85.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Vuurman, E., Rikken, G., Muntjewerff, N., de Halleux, F., & Ramaekers, J. (2004). Effects of desloratadine, diphenhydramine, and placebo on driving performance and psychomotor performance measurements. European Journal of Clinical Pharmacology, 60(5), 307–313.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Zlomuzica, A., Ruocco, L., Sadile, A., Huston, J., & Dere, E. (2009). Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. British Journal of Pharmacology, 157(1), 86–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maya Balamane
    • 1
    Email author
  • Stephanie A. Kolakowsky-Hayner
    • 2
  1. 1.Mount Sinai Brain Injury Research CenterSan FranciscoUSA
  2. 2.Department of Rehabilitation Medicine, Icahn School of Medicine at Mount SinaiNew YorkUSA