Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Periventricular Leukomalacia

  • Hien Nguyen
  • Amit X. MalhotraEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1583

Synonyms

Cerebral leukencephalopathy; Encephalopathy of prematurity; Perinatal panencephalopathy; Periventricular white matter change

Short Description

Periventricular leukomalacia (PVL) is the predominant pattern of neurologic injury found in preterm and low birth weight infants. PVL is traditionally described as focal areas of cystic necrosis of periventricular white matter with histological findings of loss of pre-oligodendrocytes (Pre-OLs), astrogliosis, and microglial activation. This pattern of injury has altered with changes in medical care towards a more diffuse distribution of microcystic lesions along the cerebral white matter. These changes in cerebral structure have been associated with numerous clinical symptoms, including cerebral palsy, visual dysfunction, and cognitive impairment. In more recent years, with greater MRI scanning, there has been greater recognition of clinically silent PVL.

Categorization

PVL has two overlapping forms: cystic and non-cystic. In cystic...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Ancel, P., Livinec, F., Larroque, B., et al. (2006). Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrsound abnormalities: The EPIPAGE cohort study. Pediatrics, 117, 828–835.CrossRefGoogle Scholar
  2. Andrews, W. W., Cliver, S. P., Biasini, F., et al. (2008). Early preterm birth: Association between in utero exposure to acute inflammation and severe neurodevelopmental disability at 6 years of age. American Journal of Obstetrics, 198(4), 466.e1–466.e11.CrossRefGoogle Scholar
  3. Back, S. A., Riddle, A., & McClure, M. M. (2007). Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke, 38, 724–730.CrossRefGoogle Scholar
  4. Brown, M. S., Eichorst, D., Lala-Black, B., & Gonzalez, R. (2009). Higher cumulative doses of erythropoietin and developmental outcomes in preterm infants. Pediatrics, 124, e681–e687.CrossRefGoogle Scholar
  5. Buser, J. R., Maire, J., Riddle, A., Gong, X., Nguyen, T., Nelson, K., Luo, N. L., Ren, J., Struve, J., Sherman, L. S., Miller, S. P., Chau, V., Hendson, G., Ballabh, P., Grafe, M. R., & Back, S. A. (2012). Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Annals of Neurology, 71, 93–109.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Choi, J. Y., Rha, D. W., & Park, E. S. (2015). The effects of the severity of periventricular leukomalacia on the neuropsychological outcomes of preterm children. Journal of Child Neurology, 31, 603.CrossRefGoogle Scholar
  7. Cioni, G., Bertuccelli, B., et al. (2000). Correlation between visual function, neurodevelopmental outcome, and magnetic resonance imaging findings in infants with periventricular leucomalacia. Archives of Disease in Childhood, 82, F134–F140.CrossRefGoogle Scholar
  8. Deng, W., Pleasure, J., & Pleasure, D. (2008). Progress in periventricular leukomalacia. Archives of Neurology, 65(10), 1291–1295.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dyet, L. E., Kennea, N., Counsell, S. J., Maalouf, E. F., Ajayi-Obe, M., Duggan, P. J., Harrison, M., Allsop, J. M., Hajnal, J., Herlihy, A. H., Edwards, B., Laroche, S., Cowan, F. M., Rutherford, M. A., & Edwards, A. D. (2006). Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imagingfrom birth and neurodevelopmental assessment. Pediatrics, 118(2), 536–548.CrossRefGoogle Scholar
  10. Elitt, C., Rosenberg, P., et al. (2014). The developing oligodendrocyte: Key cellular target in brain injury in the premature infant. Neuroscience, 276, 216–238.CrossRefGoogle Scholar
  11. Follett, P. L., Deng, W., Dai, W., Talos, D. M., Massillon, L. J., Rosenberg, P. A., et al. (2004). Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: A protective role for topiramate. Journal of Neuroscience, 24(18), 4412–4420.CrossRefGoogle Scholar
  12. Gong, P., Sherman, L. S., et al. (2013). Digestion products of the PH20 hyaluronidase inhibit remyelination. Annals of Neurology, 73, 266–280.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Imamura, T., Ariga, H., Kaneko, M., Watanabe, M., Shibukawa, Y., Fukuda, Y., Nagasawa, K., Goto, A., & Fujiki, T. (2013). Neurodevelopmental outcomes of children with periventricular leukomalacia. Pediatric Neonatology, 54(6), 367–372.CrossRefGoogle Scholar
  14. Inder, T. E., Huppi, P. S., Warfield, S., Kikinis, R., Zientara, G. P., Barnes, P. D., Jolesz, F., & Volpe, J. J. (1999). Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Annals of Neurology, 46(5), 755–760.CrossRefGoogle Scholar
  15. Inder, T. E., Anderson, N. J., Spencer, C., Wells, S., & Volpe, J. J. (2003). White matter injury in the premature infant: A comparison between serial cranial sonographic and MR findings at term. American Journal of Neuroradiology, 24, 805–809.PubMedGoogle Scholar
  16. Jin, C., Londono, I., Mallard, C., & Lodygensky, G. A. (2015). New means to assess neonatal inflammatory brain injury. Journal of Neuroinflammation, 12, 180.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Khwaja, O., & Volpe, J. J. (2008). Pathogenesis of cerebral white matter injury of prematurity. Archives of Disease in Childhood, 93, F153–F161.CrossRefGoogle Scholar
  18. Kouwaki, M., Yokochi, M., Togawa, Y., Kamiya, T., & Yokochi, K. (2013). Spontaneous movements in the supine position of healthy term infants and preterm infants with or without periventricular leukomalacia. Brain & Development, 35(4), 340–348.CrossRefGoogle Scholar
  19. Liu, W., Shen, Y., Plane, J. M., Pleasure, D. E., & Deng, W. (2011). Neuroprotective potential of erythropoietin and its derivative carbamylated erythropoietin in periventricular leukomalacia. Experimental Neurology, 230(2), 227–239.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Manon, J. N. L., Benders., Karina J. Kersbergen., Linda, S., de Vries. (2014). Neuroimaging of White Matter Injury, Intraventricular and Cerebellar Hemorrhage. Clinics in Perinatology, 41(1):69–82.CrossRefGoogle Scholar
  21. Marnie, P., Xi, G., Weiping, S., Steven, G. M., Fatima, B., Clayton, W., Scott, F., Rubing, X., Jaime, S., Justin, D., Bruce, B., Paul, H. W., Thomas J. M., Stephen A. B., Larry S. S. (2013). Digestion products of the PH20 hyaluronidase inhibit remyelination. Annals of Neurology, 73(2):266–280.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Nanba, Y., et al. (2007). Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics, 120, e10–e19.CrossRefGoogle Scholar
  23. Pierson, C. R., Folkerth, R. D., Billiards, S. S., Trachtenberg, F. L., Drinkwater, M. E., et al. (2007). Grey matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathologica, 114, 619–631.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Polin, R. A. (2008). Systemic infection and brain injury in the preterm infant. Journal of Pediatrics, 84(3), 188–191.Google Scholar
  25. Rees, S., Hale, N., De Matteo, R., Cardamone, L., Tolcos, M., Loeliger, M., Mackintosh, A., Shields, A., Probyn, M., Greenwood, D., et al. (2010). Erythropoietin is neuroprotective in a preterm ovine model of endotoxininduced brain injury. Journal of Neuropatholy and Experimental Neurology, 69, 306–319.CrossRefGoogle Scholar
  26. Sie, L., Hart, A., van Hof, J., de Groot, L., Lems, W., Lafeber, H., Valk, J., van der Knaap, M. (2005). Predictive Value of Neonatal MRI with Respect to Late MRI Findings and Clinical Outcome. A Study in Infants with Periventricular Densities on Neonatal Ultrasound. Neuropediatrics, 36(02):78–89.CrossRefGoogle Scholar
  27. Sillviera, R. C., Procianoy, R. S., Dill, J. C., & da Costa, C. S. (2008). Periventricular leukomalacia in very low birth weight preterm neonates with high risk for neonatal sepsis. Journal of Pediatrics, 84(3), 211–216.Google Scholar
  28. Skinner, R. A., et al. (2001). Psychosocial implications of poor motor coordination in children and adolescents. Human Movement Science, 20, 73–93.CrossRefGoogle Scholar
  29. Tetsu, N., Linda, S., de Vries., Manon, J. N. L., Benders., Taro, T., Peter, G. J., Nikkels,, Floris Groenendaal. (2011) Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology, 53(9):669–679.Google Scholar
  30. van Haastert, I. C., & Groenendaal, F. (2011). Decreasing incidence and severity of cerebral palsy in prematurely born children. Journal of Pediatrics, 159(1), 86–91.CrossRefGoogle Scholar
  31. Volpe, J. J. (2003). Cerebral white matter injury of the premature infant- more common than you think. Pediatrics, 112(1), 176–180.CrossRefGoogle Scholar
  32. Woodard, L., Anderson, P., Austin, A., et al. (2006). Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. NEJM, 355(7), 685–695.CrossRefGoogle Scholar
  33. Wu, Y. W., & Colford, J. M. (2000). Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA, 283(11), 1417–1424.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsKaiser Permanente East BayOaklandUSA
  2. 2.Department of Pediatric Specialty, Division of NeurologyTPMG, Kaiser Permanente East Bay Medical CenterOaklandUSA