Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan


  • Amanda McGovernEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1128


Hypothalamus, derived from Greek U’ποθαλαμοσ, meaning under the thalamus, occupies the major portion of the ventral diencephalon and forms the wall and floor of the inferior portion of the third ventricle. Comprised of specialized groups of neurons clustered in bilateral nuclei, the hypothalamus serves as the central regulator of homeostasis by interacting with and exerting regulatory influence over the following systems: the endocrine system via the pituitary gland, the autonomic nervous system, and the limbic system.


The hypothalamus is bounded by the lamina terminalis rostrally, the hypothalamic sulcus dorsally, and the internal capsule laterally. Forming the walls and floor of the inferior portion of the third ventricle, this diencephalic structure is composed of three functional mediolateral zones and three anatomical anterior-posterior levels. The mediolateral organization – the periventricular, middle, and lateral zones – corresponds to the functions of the...

This is a preview of subscription content, log in to check access.

References and Readings

  1. Anand, B. K., & Brobeck, J. R. (1951). Localization of a feeding center in the hypothalamus of the rat. Proceedings of the Society for Experimental Biology and Medicine, 77, 323–324.PubMedCrossRefGoogle Scholar
  2. Baird, A. D., Wilson, S. J., Bladin, P. F., Saling, M. M., & Reutens, D. C. (2007). Neurological control of human sexual behavior: Insights from lesion studies. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 1042–1049.PubMedCrossRefGoogle Scholar
  3. Bao, A. M., Meynen, G., & Swaab, D. F. (2008). The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Research Review, 57, 531–553.CrossRefGoogle Scholar
  4. Bellinger, L. L., & Bernardis, L. L. (1982). Water regulation in weanling hypodipsic dorsomedial hypothalamic-lesioned rats. American Journal of Physiology, 242, R285–R295.PubMedGoogle Scholar
  5. Benarroch, E. E. (2007). Thermoregulation: Recent concepts and remaining questions. Neurology, 69, 1293–1297.PubMedCrossRefGoogle Scholar
  6. Bernardis, L. L., & Bellinger, L. L. (1987). The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Research, 434, 321–381.PubMedCrossRefGoogle Scholar
  7. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland: Sinauer Associates.Google Scholar
  8. Broberger, C., Landry, M., Wong, H., Walsh, J. N., & Hokfelt, T. (1997). Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology, 66, 393–408.PubMedCrossRefGoogle Scholar
  9. Buijs, R. M., van Eden, C. G., Goncharuk, V. D., & Kalsbeek, A. (2003). The biological clock tunes the organs of the body: Timing by hormones and the autonomic nervous system. Journal of Endocrinology, 177, 17–26.PubMedCrossRefGoogle Scholar
  10. Chou, T. C., Scammell, T. E., Gooley, J. J., Gaus, S. E., Saper, C. B., & Lu, J. (2003). Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. Journal of Neuroscience, 23, 10691–10702.PubMedCrossRefGoogle Scholar
  11. Dimicco, J. A., & Zaretsky, D. V. (2007). The dorsomedial hypothalamus: A new player in thermoregulation. American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology, 292, R47–R63.Google Scholar
  12. Elmquist, J. K., Maratos-Flier, E., Saper, C. B., & Flier, J. S. (1998). Unraveling the central nervous system pathways underlying responses to leptin. Nature Neuroscience, 1, 445–450.PubMedCrossRefGoogle Scholar
  13. Ferguson, A. V., Latchford, K. J., & Samson, W. K. (2008). The paraventricular nucleus of the hypothalamus – A potential target for integrative treatment of autonomic dysfunction. Expert Opinions in Therapeutic Targets, 12, 717–727.CrossRefGoogle Scholar
  14. Friedman, J. M., & Halass, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.PubMedCrossRefGoogle Scholar
  15. Greer, M. A. (1955). Suggestive evidence of a primary “drinking center”. Proceedings of the Society for Experimental Biology and Medicine, 89, 59–62.PubMedCrossRefGoogle Scholar
  16. Harris, G. W. (1948). Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohypophysis. Journal of Physiology, 107, 418–429.PubMedCrossRefGoogle Scholar
  17. King, B. M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and bodyweight. Physiology and Behavior, 87, 221–244.PubMedCrossRefGoogle Scholar
  18. Martin, J. H. (1996). Neuroanatomy: Text and atlas (2nd ed.). Stamford: Appleton & Lange.Google Scholar
  19. Mendoza, J., & Foundas, A. L. (2008). Clinical neuroanatomy: A neurobehavioral approach. New York: Springer.Google Scholar
  20. Micevych, P. E., Wong, A. M., & Mittelman-Smith, M. A. (2015). Estradiol membrane-initiated signaling and female reproduction. Comparative Physiology, 5, 1211–1222.CrossRefGoogle Scholar
  21. Miller, B. L., Cummings, J. L., McIntyre, H., Ebers, G., & Grode, M. (1986). Hypersexuality or altered sexual preference following brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 49, 867–873.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Mogenson, G. J., & Stevenson, J. A. (1967). Drinking induced by electrical stimulation of the lateral hypothalamus. Experimental Neurology, 17, 119–127.PubMedCrossRefGoogle Scholar
  23. Moore, R. Y. (1973). Retinohypothalamic projection in mammals: A comparative study. Brain Research, 49, 403–409.PubMedCrossRefGoogle Scholar
  24. Oka, Y., Ye, M., & Zuker, C. S. (2015). Thirst driving and suppressing signals encoded by distinct neuronal populations in the brain. Nature, 520, 349–352.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Poeppl, T. B., Langguth, B., Rupprecht, R., Safron, A., Bzdok, D., Laird, A. R., et al. (2016). The neural basis of sex differences in sexual behavior: A quantitative meta-analysis. Frontiers in Neuroendocrinology, 43, 28–43.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A.-S., McNamara, J. O., et al. (2004). Neuroscience (3rd ed.). Sunderland: Sinauer Associates, Inc..Google Scholar
  27. Pyner, S. (2014). The paraventricular nucleus and heart failure. Experimental Physiology, 99, 332–339.PubMedCrossRefGoogle Scholar
  28. Roeder, F., Orthner, H., & Müller, D. (1972). The stereotaxic treatment of pedophilic homosexuality and other sexual deviations. In E. Hitchcock, L. Laitinen, & K. Vaernet (Eds.), Psychosurgery (pp. 87–111). Springfield: Charles C Thomas.Google Scholar
  29. Saper, C. B., Chou, T. C., & Scammell, T. E. (2001). The sleep switch: Hypothalamic control of sleep and wakefulness. Trends in Neuroscience, 24, 726–731.CrossRefGoogle Scholar
  30. Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437, 1257–1263.PubMedCrossRefGoogle Scholar
  31. Sewards, T. V., & Sewards, M. A. (2003). Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Research Bulletin, 61, 25–49.PubMedCrossRefGoogle Scholar
  32. Swanson, L. W., & Mogenson, G. J. (1981). Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses and adaptive behavior. Brain Research Review, 3, 1–34.CrossRefGoogle Scholar
  33. Szymusiak, R., Alam, N., Steininger, T. L., & McGinty, D. (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Research, 803, 178–188.PubMedCrossRefGoogle Scholar
  34. Vrang, N., Larsen, P. J., Clausen, J. T., & Kristensen, P. (1999). Neurochemical characterization of hypothalamic cocaine- amphetamine-regulated transcript neurons. Journal of Neuroscience, 19, RC5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Zhao, Z. D., Yang, W. Z., Gao, C., Fu, X., Zhang, W., Zhou, Q., et al. (2017). A hypothalamic circuit that controls body temperature. Proceedings of the National Academy of Sciences, 114, 2042–2047.CrossRefGoogle Scholar
  36. Zigman, J. M., & Elmquist, J. K. (2003). From anorexia to obesity – The yin and yang of body weight control. Endocrinology, 144, 3749–3756.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PsychiatryColumbia University Medical CenterNew YorkUSA