Encyclopedia of Clinical Neuropsychology

2018 Edition
| Editors: Jeffrey S. Kreutzer, John DeLuca, Bruce Caplan

Constraint Induced Therapy

  • Carley Borza
  • Martin Mrazik
  • Marianne HrabokEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-57111-9_1087

Definition

Constraint induced therapy (CIT), or more commonly termed constraint induced movement therapy (CIMT), is a neurorehabilitation technique used primarily following stroke, in order to improve functional use of the neurologically weaker upper extremity (Etoom et al. 2016; Fritz et al. 2012; Taub and Uswatte 2006). CIMT typically involves the restraint of an unaffected upper extremity combined with intensive practice with the affected extremity (Kwakkel et al. 2015; Taub and Uswatte 2006). There are a number of excellent reviews and meta-analyses that have recently been published (see “References”).

Historical Background

CIMT was first documented in 1909 by Munk in nonhuman primates (Munk 1909, as cited in Kwakkel et al. 2015). It was observed that animals avoided use of their affected limb unless the unaffected limb was restrained (Fritz et al. 2012; Taub and Uswatte 2006). This idea was then applied to patients with hemiplegia following stroke (Taub and Uswatte 2006)....

This is a preview of subscription content, log in to check access.

References

  1. Arya, K. N., Pandian, S., Verma, R., & Garg, R. K. (2011). Movement therapy induced neural reorganization and motor recovery in stroke: A review. Journal of Bodywork and Movement Therapies, 15(4), 528–537.  https://doi.org/10.1016/j.jbmt.2011.01.023.CrossRefPubMedGoogle Scholar
  2. Barzel, A., Ketels, G., Stark, A., Tetzlaff, B., Daubmann, A., Wegscheider, K., …, & Scherer, M. (2015). Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): A cluster-randomised, controlled trial. The Lancet Neurology, 14(9), 893–902.  https://doi.org/10.1016/S1474-4422(15)00147-7.PubMedCrossRefGoogle Scholar
  3. Berque, P., Gray, H., & McFadyen, A. (2013). A combination of constraint-induced therapy and motor control retraining in the treatment of focal hand dystonia in musicians: A long-term follow-up study. Medical Problems of Performing Artists, 28(1), 33–46.PubMedGoogle Scholar
  4. Buma, F., Kwakkel, G., & Ramsey, N. (2013). Understanding upper limb recovery after stroke. Restorative Neurology and Neuroscience, 31(6), 707–722.  https://doi.org/10.3233/RNN-130332.CrossRefPubMedGoogle Scholar
  5. Case-Smith, J., DeLuca, S. C., Stevenson, R., & Ramey, S. L. (2012). Multicenter randomized controlled trial of pediatric constraint-induced movement therapy: 6-month follow-up. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 66(1), 15–23.CrossRefGoogle Scholar
  6. Cimolin, V., Beretta, E., Piccinini, L., Turconi, A. C., Locatelli, F., Galli, M., & Strazzer, S. (2012). Constraint-induced movement therapy for children with hemiplegia after traumatic brain injury: A quantitative study. The Journal of Head Trauma Rehabilitation, 27(3), 177–187.  https://doi.org/10.1097/HTR.0b013e3182172276.CrossRefPubMedGoogle Scholar
  7. Corbetta, D., Sirtori, V., Castellini, G., Moja, L., & Gatti, R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane Database of Systematic Reviews, (10):CD004433.  https://doi.org/10.1002/14651858.CD004433.pub3.
  8. Etoom, M., Hawamdeh, M., Hawamdeh, Z., Alwardat, M., Giordani, L., Bacciu, S., …, & Foti, C. (2016). Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: Systematic review and meta-analysis. International Journal of Rehabilitation Research. Internationale Zeitschrift Fur Rehabilitationsforschung.Revue Internationale De Recherches De Readaptation, 39(3), 197–210.  https://doi.org/10.1097/MRR.0000000000000169.PubMedCrossRefGoogle Scholar
  9. Fritz, S. L., Butts, R. J., & Wolf, S. L. (2012). Constraint-induced movement therapy: From history to plasticity. Expert Review of Neurotherapeutics, 12(2), 191–198.  https://doi.org/10.1586/ern.11.201.CrossRefPubMedGoogle Scholar
  10. Gillick, B., Menk, J., Mueller, B., Meekins, G., Krach, L. E., Feyma, T., & Rudser, K. (2015). Synergistic effect of combined transcranial direct current stimulation/constraint-induced movement therapy in children and young adults with hemiparesis: study protocol. Bio Med Central Pediatrics, 15(1), 178. https://doi.org/0.1186/s12887-015-0498-1.Google Scholar
  11. Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience.  https://doi.org/10.3389/fnhum.2016.00442.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Henderson, C. A., & Manns, P. J. (2012). Group modified constraint-induced movement therapy (mCIMT) in a clinical setting. Disability and Rehabilitation, 34(25), 2177–2183.  https://doi.org/10.3109/09638288.2012.673686.CrossRefPubMedGoogle Scholar
  13. van Kordelaar, J., van Wegen, E. E., Nijland, R. H., Daffertshofer, A., & Kwakkel, G. (2013). Understanding adaptive motor control of the paretic upper limb early poststroke: The EXPLICIT-stroke program. Neurorehabilitation and Neural Repair, 27(9), 854–863.  https://doi.org/10.1177/1545968313496327.CrossRefPubMedGoogle Scholar
  14. Kwakkel, G., Veerbeek, J. M., van Wegen, E. E., & Wolf, S. L. (2015). Constraint-induced movement therapy after stroke. The Lancet Neurology, 14(2), 224–234.  https://doi.org/10.1016/S1474-4422(14)70160-7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Laible, M., Grieshammer, S., Seidel, G., Rijntjes, M., Weiller, C., & Hamzei, F. (2012). Association of activity changes in the primary sensory cortex with successful motor rehabilitation of the hand following stroke. Neurorehabilitation and Neural Repair, 26(7), 881–888.  https://doi.org/10.1177/1545968312437939.CrossRefPubMedGoogle Scholar
  16. Lang, K. C., Thompson, P. A., & Wolf, S. L. (2013). The EXCITE trial: Reacquiring upper-extremity task performance with early versus late delivery of constraint therapy. Neurorehabilitation and Neural Repair, 27(7), 654–663.  https://doi.org/10.1177/1545968313481281.CrossRefPubMedGoogle Scholar
  17. Mark, V. W., Taub, E., Bashir, K., Uswatte, G., Delgado, A., Bowman, M. H., …, & Cutter, G. R. (2008). Constraint-induced movement therapy can improve hemiparetic progressive multiple sclerosis. Preliminary findings. Multiple Sclerosis (Houndmills, Basingstoke, England), 14(7), 992–994.  https://doi.org/10.1177/1352458508090223.PubMedCrossRefGoogle Scholar
  18. Mark, V. W., Taub, E., Uswatte, G., Bashir, K., Cutter, G. R., Bryson, C. C., …, & Bowman, M. H. (2013). Constraint-induced movement therapy for the lower extremities in multiple sclerosis: Case series with 4-year follow-up. Archives of Physical Medicine and Rehabilitation, 94(4), 753–760.  https://doi.org/10.1016/j.apmr.2012.09.032.PubMedCrossRefGoogle Scholar
  19. Morris, D. M., Taub, E., & Mark, V. W. (2006). Constraint-induced movement therapy: Characterizing the intervention protocol. Europa Medicophysica, 42(3), 257–268.PubMedPubMedCentralGoogle Scholar
  20. Nijland, R. H., van Wegen, E. E., Harmeling-van der Wel, B. C., Kwakkel, G., & EPOS Investigators. (2010). Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: The EPOS cohort study. Stroke, 41(4), 745–750.  https://doi.org/10.1161/STROKEAHA.109.572065.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Park, J., Lee, N., Cho, Y., & Yang, Y. (2015). Modified constraint-induced movement therapy for clients with chronic stroke: Interrupted time series (ITS) design. Journal of Physical Therapy Science, 27(3), 963–966.  https://doi.org/10.1589/jpts.27.963.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rocha, S., Silva, E., Foerster, A., Wiesiolek, C., Chagas, A. P., Machado, G., …, & Monte-Silva, K. (2016). The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: A double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 653–660.  https://doi.org/10.3109/09638288.2015.1055382.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Shaw, S. E., Morris, D. M., Uswatte, G., McKay, S., Meythaler, J. M., & Taub, E. (2005). Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. Journal of Rehabilitation Research and Development, 42(6), 769–778.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Sterr, A., Szameitat, A., Shen, S., & Freivogel, S. (2006). Application of the CIT concept in the clinical environment: Hurdles, practicalities, and clinical benefits. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 19(1), 48–54. https://doi.org/00146965-200603000-00006.Google Scholar
  25. Taub, E., & Uswatte, G. (2006). Constraint-induced movement therapy: Answers and questions after two decades of research. NeuroRehabilitation, 21(2), 93–95.PubMedPubMedCentralGoogle Scholar
  26. Taub, E., Griffin, A., Uswatte, G., Gammons, K., Nick, J., & Law, C. R. (2011). Treatment of congenital hemiparesis with pediatric constraint-induced movement therapy. Journal of Child Neurology, 26(9), 1163–1173.  https://doi.org/10.1177/0883073811408423.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., …, & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: Transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383–1388.  https://doi.org/10.1161/STROKEAHA.111.000559.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Uswatte, G., & Taub, E. (2013). Constraint-induced movement therapy: A method for harnessing neuroplasticity to treat motor disorders. Progress in Brain Research, 207, 379–401.  https://doi.org/10.1016/B978-0-444-63327-9.00015-1.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Woldag, H., Voigt, N., Bley, M., & Hummelsheim, H. (2017). Constraint-induced aphasia therapy in the acute stage: What is the key factor for efficacy? A randomized controlled study. Neurorehabilitation and Neural Repair, 31(1), 72–80.  https://doi.org/10.1177/1545968316662707. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R., Nichols-Larsen, D. S., …, & Taub, E. (2010). The EXCITE stroke trial: Comparing early and delayed constraint-induced movement therapy. Stroke (00392499), 41(10), 2309–2315.  https://doi.org/10.1161/STROKEAHA.110.588723.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Zhu, Y., Zhou, C., Liu, Y., Liu, J., Jin, J., Zhang, S., …, & Wu, Y. (2016). Effects of modified constraint-induced movement therapy on the lower extremities in patients with stroke: A pilot study. Disability and Rehabilitation, 38(19), 1893–1899.  https://doi.org/10.3109/09638288.2015.1107775.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada
  2. 2.Department of Educational PsychologyUniversity of AlbertaEdmontonCanada
  3. 3.Department of Psychology, Addiction and Mental HealthAlberta Health ServicesEdmontonCanada