NeuroPsychopharmacotherapy pp 1-29 | Cite as
Course and Duration of Therapy with Parkinsonian Drugs and Withdrawal Syndromes
- 165 Downloads
Abstract
Current strategies for the treatment of Parkinson’s disease (PD) are still mainly based on the use of dopaminergic medications such as l-dihydroxyphenylalanine (l-DOPA) and dopamine agonists to stimulate striatal dopamine receptors. Indeed, therapeutic intervention with these drugs has improved the prognosis of patients with PD over the last 50 years. However, it is still inconclusive as to which medication is the best for the initial treatment of PD and whether these medications have disease-modifying effects in the long clinical course of PD. In addition, long-term treatment with these drugs can cause complications that induce motor and non-motor symptoms, including withdrawal syndrome, in patients with PD. These symptoms are refractory to l-DOPA therapy and dominate the late-stage disability, which features some clinical milestones to the end of the disease. It is important to consider the influences of parkinsonian drug treatments on the clinical course of PD. In this chapter, therapy with parkinsonian drugs and their pharmacological properties, including adverse effects and influence on disease progression, will be discussed in detail.
References
- Abrams WB, Coutinho CB, Leon AS, Spiegel HE. Absorption and metabolism of levodopa. JAMA. 1971;218:1912–4. https://www.ncbi.nlm.nih.gov/pubmed/5171067CrossRefGoogle Scholar
- Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16:448–58. https://www.ncbi.nlm.nih.gov/pubmed/11391738CrossRefGoogle Scholar
- Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75. https://www.ncbi.nlm.nih.gov/pubmed/2479133CrossRefGoogle Scholar
- Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007;6:826–9. https://doi.org/10.1016/S1474-4422(07)70218-1.CrossRefPubMedGoogle Scholar
- Asahina M, Vichayanrat E, Low DA, Iodice V, Mathias CJ. Autonomic dysfunction in parkinsonian disorders: assessment and pathophysiology. J Neurol Neurosurg Psychiatry. 2013;84:674–80. https://doi.org/10.1136/jnnp-2012-303135.CrossRefPubMedGoogle Scholar
- Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2:577–88. https://doi.org/10.1038/35086062.CrossRefPubMedGoogle Scholar
- Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem. 2007;50:5848–52. https://doi.org/10.1021/jm070677y.CrossRefPubMedGoogle Scholar
- Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA. 1999;96:12079–84. https://www.ncbi.nlm.nih.gov/pubmed/10518579CrossRefGoogle Scholar
- Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;29:1273–80. https://doi.org/10.1002/mds.25961.CrossRefPubMedGoogle Scholar
- Braak H, Del Tredici K. Invited article: Nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70:1916–25. https://doi.org/10.1212/01.wnl.0000312279.49272.9f.CrossRefPubMedGoogle Scholar
- Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. http://www.ncbi.nlm.nih.gov/pubmed/12498954CrossRefGoogle Scholar
- Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18:733–46. https://www.ncbi.nlm.nih.gov/pubmed/15330687CrossRefGoogle Scholar
- Brewer JA, Potenza MN. The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol. 2008;75:63–75. https://doi.org/10.1016/j.bcp.2007.06.043.CrossRefPubMedGoogle Scholar
- Brown JH, Laiken N. Muscarinic agonists and antagonists. In: Brunton LL, editor. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill Medical; 2011. p. 219–37.Google Scholar
- Caccia C, Maj R, Calabresi M, Maestroni S, Faravelli L, Curatolo L, et al. Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology. 2006;67:S18–23. https://doi.org/10.1212/wnl.67.7_suppl_2.s18.CrossRefPubMedGoogle Scholar
- Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14:404–16. https://www.ncbi.nlm.nih.gov/pubmed/14678757CrossRefGoogle Scholar
- Cattaneo C, Sardina M, Bonizzoni E. Safinamide as add-on therapy to levodopa in mid- to late-stage Parkinson’s disease fluctuating patients: post hoc analyses of studies 016 and SETTLE. J Park Dis. 2016;6:165–73. https://doi.org/10.3233/JPD-150700.CrossRefGoogle Scholar
- Claassen DO, Josephs KA, Ahlskog JE, Silber MH, Tippmann-Peikert M, Boeve BF. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology. 2010;75:494–9. https://doi.org/10.1212/WNL.0b013e3181ec7fac.CrossRefPubMedPubMedCentralGoogle Scholar
- Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83. https://doi.org/10.1001/jama.2014.3654.CrossRefPubMedGoogle Scholar
- Contin M, Martinelli P. Pharmacokinetics of levodopa. J Neurol. 2010;257:S253–61. https://doi.org/10.1007/s00415-010-5728-8.CrossRefPubMedGoogle Scholar
- Da Prada M, Kettler R, Zurcher G, Schaffner R, Haefely WE. Inhibition of decarboxylase and levels of dopa and 3-O-methyldopa: a comparative study of benserazide versus carbidopa in rodents and of Madopar standard versus Madopar HBS in volunteers. Eur Neurol. 1987;27(Suppl 1):9–20. http://www.ncbi.nlm.nih.gov/pubmed/3123242CrossRefGoogle Scholar
- Dairman W, Udenfriend S. Decrease in adrenal tyrosine hydroxylase and increase in norepinephrine synthesis in rats given l-dopa. Science. 1971;171:1022–4. https://www.ncbi.nlm.nih.gov/pubmed/5542806CrossRefGoogle Scholar
- Dairman W, Christenson JG, Udenfriend S. Decrease in liver aromatic l-amino-acid decarboxylase produced by chronic administration of l-dopa. Proc Natl Acad Sci USA. 1971;68:2117–20. https://www.ncbi.nlm.nih.gov/pubmed/5289371CrossRefGoogle Scholar
- de la Fuente-Fernandez R, Lu JQ, Sossi V, Jivan S, Schulzer M, Holden JE, et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol. 2001;49:298–303. https://www.ncbi.nlm.nih.gov/pubmed/11261503
- De Pablo-Fernandez E, Tur C, Revesz T, Lees AJ, Holton JL, Warner TT. Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol. 2017;74:970–6. https://doi.org/10.1001/jamaneurol.2017.1125.CrossRefPubMedPubMedCentralGoogle Scholar
- Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H. Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61:413–26. https://www.ncbi.nlm.nih.gov/pubmed/12030260CrossRefGoogle Scholar
- Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44. https://doi.org/10.1016/j.freeradbiomed.2013.01.018.CrossRefPubMedGoogle Scholar
- Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology. 1988;38:1237–44. https://www.ncbi.nlm.nih.gov/pubmed/3399075CrossRefGoogle Scholar
- El Atifi-Borel M, Buggia-Prevot V, Platet N, Benabid AL, Berger F, Sgambato-Faure V. De novo and long-term l-Dopa induce both common and distinct striatal gene profiles in the hemiparkinsonian rat. Neurobiol Dis. 2009;34:340–50. https://doi.org/10.1016/j.nbd.2009.02.002.CrossRefPubMedGoogle Scholar
- Fabbrini G, Juncos J, Mouradian MM, Serrati C, Chase TN. Levodopa pharmacokinetic mechanisms and motor fluctuations in Parkinson’s disease. Ann Neurol. 1987;21:370–6. https://doi.org/10.1002/ana.410210409.CrossRefPubMedGoogle Scholar
- Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord. 2007;22:1379–89; quiz 523. https://doi.org/10.1002/mds.21475.CrossRefPubMedGoogle Scholar
- Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–508. https://doi.org/10.1056/NEJMoa033447.CrossRefPubMedGoogle Scholar
- Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301. https://www.ncbi.nlm.nih.gov/pubmed/1933245CrossRefGoogle Scholar
- Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P, et al. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 2016;15:154–65. https://doi.org/10.1016/S1474-4422(15)00336-1.CrossRefPubMedGoogle Scholar
- Forsberg M, Lehtonen M, Heikkinen M, Savolainen J, Jarvinen T, Mannisto PT. Pharmacokinetics and pharmacodynamics of entacapone and tolcapone after acute and repeated administration: a comparative study in the rat. J Pharmacol Exp Ther. 2003;304:498–506. https://doi.org/10.1124/jpet.102.042846.CrossRefPubMedGoogle Scholar
- Fox C, Richardson K, Maidment ID, Savva GM, Matthews FE, Smithard D, et al. Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc. 2011;59:1477–83. https://doi.org/10.1111/j.1532-5415.2011.03491.x.CrossRefPubMedGoogle Scholar
- Gancher ST, Nutt JG, Woodward WR. Peripheral pharmacokinetics of levodopa in untreated, stable, and fluctuating parkinsonian patients. Neurology. 1987;37:940–4. https://www.ncbi.nlm.nih.gov/pubmed/3587644CrossRefGoogle Scholar
- Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32. https://www.ncbi.nlm.nih.gov/pubmed/2147780CrossRefGoogle Scholar
- Glover V, Sandler M, Owen F, Riley GJ. Dopamine is a monoamine oxidase B substrate in man. Nature. 1977;265:80–1. https://www.ncbi.nlm.nih.gov/pubmed/834248CrossRefGoogle Scholar
- Godwin-Austen RB, Tomlinson EB, Frears CC, Kok HW. Effects of l-dopa in Parkinson’s disease. Lancet. 1969;2:165–8. https://www.ncbi.nlm.nih.gov/pubmed/4183130CrossRefGoogle Scholar
- Guldberg HC, Marsden CA. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev. 1975;27:135–206. https://www.ncbi.nlm.nih.gov/pubmed/1103160
- Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80. https://doi.org/10.1016/S0893-133X(98)00066-9.CrossRefPubMedGoogle Scholar
- Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain. 2014;137:2493–508. https://doi.org/10.1093/brain/awu193.CrossRefPubMedGoogle Scholar
- Harada T, Mitsuoka K, Kumagai R, Murata Y, Kaseda Y, Kamei H, et al. Clinical features of malignant syndrome in Parkinson’s disease and related neurological disorders. Parkinsonism Relat Disord. 2003;9(Suppl 1):S15–23. https://www.ncbi.nlm.nih.gov/pubmed/12735911CrossRefGoogle Scholar
- Hauser RA, Koller WC, Hubble JP, Malapira T, Busenbark K, Olanow CW. Time course of loss of clinical benefit following withdrawal of levodopa/carbidopa and bromocriptine in early Parkinson’s disease. Mov Disord. 2000;15:485–9. https://www.ncbi.nlm.nih.gov/pubmed/10830413CrossRefGoogle Scholar
- Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22:2409–17. https://doi.org/10.1002/mds.21743.CrossRefPubMedGoogle Scholar
- Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44. https://doi.org/10.1002/mds.21956.CrossRefPubMedGoogle Scholar
- Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality, Neurology. 1967; 17:427–42. https://www.ncbi.nlm.nih.gov/pubmed/6067254
- Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61:1044–53. https://doi.org/10.1001/archneur.61.7.1044.CrossRefPubMedGoogle Scholar
- Horowski R, Loschmann PA. Classical dopamine agonists. J Neural Transm (Vienna). 2019;126:449–54. https://doi.org/10.1007/s00702-019-01989-y.CrossRefGoogle Scholar
- Humpel M, Krause W, Hoyer GA, Wendt H, Pommerenke G. The pharmacokinetics and biotransformation of 14C-lisuride hydrogen maleate in rhesus monkey and in man. Eur J Drug Metab Pharmacokinet. 1984;9:347–57. https://doi.org/10.1007/BF03189685.CrossRefPubMedGoogle Scholar
- Ikebe S, Harada T, Hashimoto T, Kanazawa I, Kuno S, Mizuno Y, et al. Prevention and treatment of malignant syndrome in Parkinson’s disease: a consensus statement of the malignant syndrome research group. Parkinsonism Relat Disord. 2003;9(Suppl 1):S47–9. https://www.ncbi.nlm.nih.gov/pubmed/12735915CrossRefGoogle Scholar
- Inzelberg R, Nisipeanu P, Rabey JM, Orlov E, Catz T, Kippervasser S, et al. Double-blind comparison of cabergoline and bromocriptine in Parkinson’s disease patients with motor fluctuations. Neurology. 1996;47:785–8. https://www.ncbi.nlm.nih.gov/pubmed/8797480CrossRefGoogle Scholar
- Jankovic J, Kapadia AS. Functional decline in Parkinson disease. Arch Neurol. 2001;58:1611–5. https://www.ncbi.nlm.nih.gov/pubmed/11594919CrossRefGoogle Scholar
- Jankovic J, Watts RL, Martin W, Boroojerdi B. Transdermal rotigotine: double-blind, placebo-controlled trial in Parkinson disease. Arch Neurol. 2007;64:676–82. https://doi.org/10.1001/archneur.64.5.676.CrossRefPubMedGoogle Scholar
- Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna). 2019;126:933–95. https://doi.org/10.1007/s00702-019-02028-6.CrossRefGoogle Scholar
- Jiang H, Huang J, Shen Y, Guo S, Wang L, Han C, et al. RBD and neurodegenerative diseases. Mol Neurobiol. 2017;54:2997–3006. https://doi.org/10.1007/s12035-016-9831-4.CrossRefPubMedGoogle Scholar
- Katzenschlager R, Sampaio C, Costa J, Lees A. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev. 2003; CD003735. https://doi.org/10.1002/14651858.CD003735.
- Katzenschlager R, Poewe W, Rascol O, Trenkwalder C, Deuschl G, Chaudhuri KR, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;17:749–59. https://doi.org/10.1016/S1474-4422(18)30239-4.CrossRefPubMedGoogle Scholar
- Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133:1755–62. https://doi.org/10.1093/brain/awq059.CrossRefPubMedGoogle Scholar
- Kipps CM, Fung VS, Grattan-Smith P, de Moore GM, Morris JG. Movement disorder emergencies. Mov Disord. 2005;20:322–34. https://doi.org/10.1002/mds.20325.CrossRefPubMedGoogle Scholar
- Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol. 1989; 166:589–90. https://doi.org/10.1016/0014-2999(89)90384-1.CrossRefPubMedGoogle Scholar
- Kornhuber J, Bormann J, Hubers M, Rusche K, Riederer P. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol. 1991;206:297–300. https://doi.org/10.1016/0922-4106(91)90113-v.CrossRefPubMedGoogle Scholar
- Kurth MC, Adler CH, Hilaire MS, Singer C, Waters C, LeWitt P, et al. Tolcapone improves motor function and reduces levodopa requirement in patients with Parkinson’s disease experiencing motor fluctuations: a multicenter, double-blind, randomized, placebo-controlled trial. Tolcapone Fluctuator Study Group I. Neurology. 1997;48:81–7. https://www.ncbi.nlm.nih.gov/pubmed/9008498CrossRefGoogle Scholar
- Kvernmo T, Hartter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28:1065–78. https://doi.org/10.1016/j.clinthera.2006.08.004.CrossRefPubMedGoogle Scholar
- Lees AJ, Katzenschlager R, Head J, Ben-Shlomo Y. Ten-year follow-up of three different initial treatments in de-novo PD: a randomized trial. Neurology. 2001;57:1687–94. https://www.ncbi.nlm.nih.gov/pubmed/11706112CrossRefGoogle Scholar
- Lees AJ, Ferreira J, Rascol O, Poewe W, Rocha JF, McCrory M, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74:197–206. https://doi.org/10.1001/jamaneurol.2016.4703.CrossRefPubMedGoogle Scholar
- Lesser RP, Fahn S, Snider SR, Cote LJ, Isgreen WP, Barrett RE. Analysis of the clinical problems in parkinsonism and the complications of long-term levodopa therapy. Neurology. 1979;29:1253–60. https://www.ncbi.nlm.nih.gov/pubmed/573405CrossRefGoogle Scholar
- LeWitt PA, Lyons KE, Pahwa R, SP 650 Study Group. Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology. 2007;68:1262–7. https://doi.org/10.1212/01.wnl.0000259516.61938.bb.CrossRefPubMedGoogle Scholar
- Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, Boeve BF, et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology. 2007;68:812–9. https://doi.org/10.1212/01.wnl.0000256715.13907.d3.CrossRefPubMedGoogle Scholar
- Liuzzi A, Dallabonzana D, Oppizzi G, Verde GG, Cozzi R, Chiodini P, et al. Low doses of dopamine agonists in the long-term treatment of macroprolactinomas. N Engl J Med. 1985;313:656–9. https://doi.org/10.1056/NEJM198509123131103.CrossRefPubMedGoogle Scholar
- Maier Hoehn MM. Parkinsonism treated with levodopa: progression and mortality. J Neural Transm Suppl. 1983;19:253–64. https://www.ncbi.nlm.nih.gov/pubmed/6583311
- Morgan JP, Bianchine JR, Spiegel HE, Rivera-Calimlim L, Hersey RM. Metabolism of levodopa in patients with Parkinson’s disease. Radioactive and fluorometric assays. Arch Neurol. 1971;25:39–44. https://www.ncbi.nlm.nih.gov/pubmed/5146410CrossRefGoogle Scholar
- Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord. 2003;18:738–50. https://doi.org/10.1002/mds.10473.CrossRefGoogle Scholar
- Myllyla VV, Sotaniemi KA, Vuorinen JA, Heinonen EH. Selegiline as initial treatment in de novo parkinsonian patients. Neurology. 1992;42:339–43. https://www.ncbi.nlm.nih.gov/pubmed/1736162CrossRefGoogle Scholar
- Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–7. https://www.ncbi.nlm.nih.gov/pubmed/14216443
- Nutt JG, Woodward WR, Beckner RM, Stone CK, Berggren K, Carter JH, et al. Effect of peripheral catechol-O-methyltransferase inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology. 1994;44:913–9. https://www.ncbi.nlm.nih.gov/pubmed/8190296CrossRefGoogle Scholar
- Nutt JG, Carter JH, Van Houten L, Woodward WR. Short- and long-duration responses to levodopa during the first year of levodopa therapy. Ann Neurol. 1997;42:349–55. https://doi.org/10.1002/ana.410420311.CrossRefPubMedGoogle Scholar
- Oertel WH, Wolters E, Sampaio C, Gimenez-Roldan S, Bergamasco B, Dujardin M, et al. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET study. Mov Disord. 2006;21:343–53. https://doi.org/10.1002/mds.20724.CrossRefPubMedGoogle Scholar
- Olanow CW, Myllyla VV, Sotaniemi KA, Larsen JP, Palhagen S, Przuntek H, et al. Effect of selegiline on mortality in patients with Parkinson’s disease: a meta-analysis. Neurology. 1998;51:825–30. https://doi.org/10.1212/wnl.51.3.825.CrossRefPubMedGoogle Scholar
- Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361:1268–78. https://doi.org/10.1056/NEJMoa0809335.CrossRefPubMedGoogle Scholar
- Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13:141–9. https://doi.org/10.1016/S1474-4422(13)70293-X.CrossRefPubMedGoogle Scholar
- Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015;30:788–95. https://doi.org/10.1002/mds.26159.CrossRefPubMedPubMedCentralGoogle Scholar
- Palhagen S, Heinonen E, Hagglund J, Kaugesaar T, Maki-Ikola O, Palm R, et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology. 2006;66:1200–6. https://doi.org/10.1212/01.wnl.0000204007.46190.54.CrossRefPubMedGoogle Scholar
- Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–83. https://doi.org/10.1056/NEJM199301213280305.CrossRefGoogle Scholar
- PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384:1196–205. https://doi.org/10.1016/S0140-6736(14)60683-8.CrossRefGoogle Scholar
- Pessoa RR, Moro A, Munhoz RP, Teive HAG, Lees AJ. Apomorphine in the treatment of Parkinson’s disease: a review. Arq Neuropsiquiatr. 2018;76:840–8. https://doi.org/10.1590/0004-282X20180140.CrossRefPubMedGoogle Scholar
- Poewe WH, Wenning GK. The natural history of Parkinson’s disease. Neurology. 1996;47:S146–52. https://www.ncbi.nlm.nih.gov/pubmed/8959983CrossRefGoogle Scholar
- Poewe WH, Deuschl G, Gordin A, Kultalahti ER, Leinonen M, Celomen Study Group. Efficacy and safety of entacapone in Parkinson’s disease patients with suboptimal levodopa response: a 6-month randomized placebo-controlled double-blind study in Germany and Austria (Celomen study). Acta Neurol Scand. 2002;105:245–55. https://www.ncbi.nlm.nih.gov/pubmed/11939936CrossRefGoogle Scholar
- Quack G, Hesselink M, Danysz W, Spanagel R. Microdialysis studies with amantadine and memantine on pharmacokinetics and effects on dopamine turnover. J Neural Transm Suppl. 1995;46:97–105. https://www.ncbi.nlm.nih.gov/pubmed/8821045
- Rabinak CA, Nirenberg MJ. Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol. 2010;67:58–63. https://doi.org/10.1001/archneurol.2009.294.CrossRefPubMedGoogle Scholar
- Rangel-Barajas C, Coronel I, Floran B. Dopamine receptors and neurodegeneration. Aging Dis. 2015;6:349–68. https://doi.org/10.14336/AD.2015.0330.CrossRefPubMedPubMedCentralGoogle Scholar
- Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342:1484–91. https://doi.org/10.1056/NEJM200005183422004.CrossRefPubMedGoogle Scholar
- Rascol O, Hauser RA, Stocchi F, Fitzer-Attas CJ, Sidi Y, Abler V, et al. Long-term effects of rasagiline and the natural history of treated Parkinson’s disease. Mov Disord. 2016;31:1489–96. https://doi.org/10.1002/mds.26724.CrossRefPubMedGoogle Scholar
- Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D. Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (-)deprenyl administration. J Neural Transm. 1978;43:271–7. https://www.ncbi.nlm.nih.gov/pubmed/745019CrossRefGoogle Scholar
- Riederer P, Youdim MB. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with l-deprenyl. J Neurochem. 1986;46:1359–65. https://doi.org/10.1111/j.1471-4159.1986.tb01747.x.CrossRefPubMedGoogle Scholar
- Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, et al. alpha-Synuclein in Parkinson’s disease: causal or bystander? J Neural Transm (Vienna). 2019;126:815–40. https://doi.org/10.1007/s00702-019-02025-9.CrossRefGoogle Scholar
- Rinne UK, Molsa P. Levodopa with benserazide or carbidopa in Parkinson disease. Neurology. 1979;29:1584–9. https://www.ncbi.nlm.nih.gov/pubmed/574221CrossRefGoogle Scholar
- Rizos A, Sauerbier A, Antonini A, Weintraub D, Martinez-Martin P, Kessel B, et al. A European multicentre survey of impulse control behaviours in Parkinson’s disease patients treated with short- and long-acting dopamine agonists. Eur J Neurol. 2016. https://doi.org/10.1111/ene.13034.CrossRefGoogle Scholar
- Rocha JF, Almeida L, Falcao A, Palma PN, Loureiro AI, Pinto R, et al. Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. Br J Clin Pharmacol. 2013;76:763–75. https://doi.org/10.1111/bcp.12081.CrossRefPubMedPubMedCentralGoogle Scholar
- Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol. 2008;63:167–73. https://doi.org/10.1002/ana.21291.CrossRefPubMedGoogle Scholar
- Schapira AH, McDermott MP, Barone P, Comella CL, Albrecht S, Hsu HH, et al. Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol. 2013;12:747–55. https://doi.org/10.1016/S1474-4422(13)70117-0.CrossRefPubMedPubMedCentralGoogle Scholar
- Scheller D, Ullmer C, Berkels R, Gwarek M, Lubbert H. The in vitro receptor profile of rotigotine: a new agent for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2009;379:73–86. https://doi.org/10.1007/s00210-008-0341-4.CrossRefPubMedGoogle Scholar
- Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology. 1996;46:388–93. https://www.ncbi.nlm.nih.gov/pubmed/8614500
- Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123(Pt 11):2297–305. https://www.ncbi.nlm.nih.gov/pubmed/11050029CrossRefGoogle Scholar
- Schwab RS, Amador LV, Lettvin JY. Apomorphine in Parkinson’s disease. Trans Am Neurol Assoc. 1951;56:251–3. https://www.ncbi.nlm.nih.gov/pubmed/14913646
- Seeman P. Parkinson’s disease treatment may cause impulse-control disorder via dopamine D3 receptors. Synapse. 2015;69:183–9. https://doi.org/10.1002/syn.21805.CrossRefPubMedGoogle Scholar
- Serrano-Duenas M. Neuroleptic malignant syndrome-like, or – dopaminergic malignant syndrome – due to levodopa therapy withdrawal. Clinical features in 11 patients. Parkinsonism Relat Disord. 2003;9:175–8. https://www.ncbi.nlm.nih.gov/pubmed/12573874CrossRefGoogle Scholar
- St Louis EK, Boeve AR, Boeve BF. REM sleep behavior disorder in Parkinson’s disease and other synucleinopathies. Mov Disord. 2017;32:645–58. https://doi.org/10.1002/mds.27018.CrossRefPubMedGoogle Scholar
- Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain. 2002;125:2058–66. https://doi.org/10.1093/brain/awf214.CrossRefPubMedGoogle Scholar
- Stocchi F, Arnold G, Onofrj M, Kwiecinski H, Szczudlik A, Thomas A, et al. Improvement of motor function in early Parkinson disease by safinamide. Neurology. 2004;63:746–8. https://doi.org/10.1212/01.wnl.0000134672.44217.f7.CrossRefPubMedGoogle Scholar
- Stocchi F, Vacca L, Ruggieri S, Olanow CW. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol. 2005;62:905–10. https://doi.org/10.1001/archneur.62.6.905.CrossRefPubMedGoogle Scholar
- Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord. 2012;27:106–12. https://doi.org/10.1002/mds.23954.CrossRefPubMedGoogle Scholar
- Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75:141–3. https://www.ncbi.nlm.nih.gov/pubmed/14707325
- Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology. 1998;50:1323–6. https://www.ncbi.nlm.nih.gov/pubmed/9595981CrossRefGoogle Scholar
- Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, et al. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28:1064–71. https://doi.org/10.1002/mds.25364.CrossRefPubMedGoogle Scholar
- Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95. https://doi.org/10.1001/archneurol.2010.65.CrossRefPubMedGoogle Scholar
- Weiss JL, Cohn CK, Chase TN. Reduction of catechol-O-methyl-transferases activity by chronic l-dopa therapy. Nature. 1971;234:218–9. https://www.ncbi.nlm.nih.gov/pubmed/4943087CrossRefGoogle Scholar
- Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol. 2003;54:93–101. https://doi.org/10.1002/ana.10609.CrossRefGoogle Scholar
- Williams DR, Lees AJ. Visual hallucinations in the diagnosis of idiopathic Parkinson’s disease: a retrospective autopsy study. Lancet Neurol. 2005;4:605–10. https://doi.org/10.1016/S1474-4422(05)70146-0.CrossRefPubMedGoogle Scholar
- Woitalla D, Muller T, Benz S, Horowski R, Przuntek H. Transdermal lisuride delivery in the treatment of Parkinson’s disease. J Neural Transm Suppl. 2004;68:89–95. https://www.ncbi.nlm.nih.gov/pubmed/15354393
- Youdim MB, Riederer P. Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm Gen Sect. 1993;91:181–95. https://www.ncbi.nlm.nih.gov/pubmed/8390270CrossRefGoogle Scholar
- Yu XX, Fernandez HH. Dopamine agonist withdrawal syndrome: a comprehensive review. J Neurol Sci. 2017;374:53–5. https://doi.org/10.1016/j.jns.2016.12.070.CrossRefPubMedGoogle Scholar
- Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med. 2007;356:39–46. https://doi.org/10.1056/NEJMoa054830.CrossRefPubMedGoogle Scholar