Advertisement

DNA/Histone Methylation and Adipocyte Differentiation: Applications to Obesity

  • Yangmian Yuan
  • Chengyu Liu
  • Danyang Wan
  • Kun HuangEmail author
  • Ling ZhengEmail author
Reference work entry

Abstract

The adipose tissue has attracted great attention lately; in addition to be known as an energy store organ, it has also been shown as an endocrine organ. Dysfunction of adipose tissue plays critical roles in the pathogenesis of many metabolic diseases including obesity, type 2 diabetes, cancer cachexia, and lipodystrophies. The increased mass of adipose tissue in obese individuals is due to hypertrophy and hyperplasia. The transcriptional cascade during adipocyte differentiation has been well defined during the past two decades, while recent studies suggest epigenetic regulation plays an important part in adipocyte differentiation. In this chapter, we focus on the regulation of DNA methylation and histone methylation in adipocyte differentiation, as well as major enzymes involved in these processes. Targeting the methylation profiles of DNA and histone to reduce adipocyte differentiation may be a potential therapeutic approach to obesity.

Keywords

Adipocyte differentiation Epigenetic regulation DNA methylation Histone methylation Commitment Adipogenesis DNA methyltransferase DNA demethylase HMT Histone demethylase 

List of Abbreviations

αKG

α-Ketoglutarate

5azadC

5-aza-2′-Deoxycytidine

ASC-2

Activating signal cointegrator 2

ASCOM

ASC-2 complex

BAT

Brown adipose tissue

BMP4

Bone morphogenic protein 4

C/EBP

CCAAT-enhancer-binding protein

Dnmts

DNA methyltransferases

eWAT

Epididymal white adipose tissue

HFD

High fat diet

MBDs

Methyl-CpG binding proteins

MCE

Mitotic clonal expansion

MECP2

Methyl-CpG binding protein-2

MEF

Mouse embryonic fibroblast

NAFLD

Nonalcohol fatty liver disease

MSCs

Mesenchymal stem cells

PGC-1α

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha

PPARγ

Peroxisome proliferator-activated receptors γ

PRC2

Polycomb repressive complex 2

PRDM16

PR domain containing 16 protein

PTIP

Pax transactivation domain-interacting protein

TETs

Ten-eleven translocation methylcytosine dioxygenases

UCP1

Uncoupling protein1

WAT

White adipose tissue

Zfp423

Zinc finger protein 423

References

  1. Abumrad NA, Forest C et al (1991) Metabolism of oleic acid in differentiating BFC-1 preadipose cells. Am J Phys 261(1 Pt 1):E76–E86Google Scholar
  2. Agger K, Cloos PA et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734PubMedCrossRefGoogle Scholar
  3. Bertolini F (2013) Adipose tissue and breast cancer progression: a link between metabolism and cancer. Breast 22(Suppl 2):S48–S49PubMedCrossRefGoogle Scholar
  4. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  5. Borengasser SJ, Zhong Y et al (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154(11):4113–4125PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bowers RR, Kim JW et al (2006) Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A 103(35):13022–13027PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cervantes-Rodriguez M, Martinez-Gomez M et al (2014) Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect. Br J Nutr 111(4):616–624PubMedCrossRefGoogle Scholar
  8. Cho YW, Hong T et al (2007) PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 282(28):20395–20406PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cho YW, Hong SH et al (2009) Histone methylation regulator PTIP is required for PPAR gamma and C/EBP alpha expression and adipogenesis. Cell Metab 10(1):27–39PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297(5):E977–E986PubMedCrossRefGoogle Scholar
  11. Cuaranta-Monroy I, Simandi Z et al (2014) Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Res 13(1):88–97PubMedCrossRefGoogle Scholar
  12. Ding Y, Li J et al (2014) DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. Int J Obes 38(2):198–204CrossRefGoogle Scholar
  13. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273PubMedPubMedCentralCrossRefGoogle Scholar
  14. Farmer SR (2008) Brown fat and skeletal muscle: unlikely cousins? Cell 134(5):726–727PubMedCrossRefGoogle Scholar
  15. de Franca SA, dos Santos MP et al (2016) A low-protein, high-carbohydrate diet stimulates thermogenesis in the brown adipose tissue of rats via ATF-2. Lipids 51(3):303–310PubMedCrossRefGoogle Scholar
  16. Fujiki K, Shinoda A et al (2013) PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun 4:2262PubMedCrossRefGoogle Scholar
  17. Galic S, Oakhill JS et al (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2):129–139PubMedCrossRefGoogle Scholar
  18. Garcia-Diaz DF, Lopez-Legarrea P et al (2014) Vitamin C in the treatment and/or prevention of obesity. J Nutr Sci Vitaminol (Tokyo) 60(6):367–379CrossRefGoogle Scholar
  19. Guo W, Chen J et al (2016) Epigenetic programming of Dnmt3a mediated by AP2alpha is required for granting preadipocyte the ability to differentiate. Cell Death Dis 7(12):e2496PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hu XM, Zhou YF et al (2016) Identification of zinc finger protein Bcl6 as a novel regulator of early adipose commitment. Open Biology 6(6):160065PubMedPubMedCentralCrossRefGoogle Scholar
  21. Juan AH, Wang S et al (2017) Roles of H3K27me2 and H3K27me3 examined during fate specification of embryonic stem cells. Cell Rep 18(1):297PubMedCrossRefGoogle Scholar
  22. Kamei Y, Suganami T et al (2010) Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity (Silver Spring) 18(2):314–321CrossRefGoogle Scholar
  23. Kazantzis M, Takahashi V et al (2012) PAZ6 cells constitute a representative model for human brown pre-adipocytes. Front Endocrinol (Lausanne) 3:13CrossRefGoogle Scholar
  24. Kim H, Park J et al (2010) DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int J Oncol 36(6):1563–1572PubMedCrossRefGoogle Scholar
  25. Kim AY, Park YJ et al (2015) Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun 6:7585PubMedPubMedCentralCrossRefGoogle Scholar
  26. Krishnan S, Horowitz S et al (2011) Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem 12(2):254–263PubMedCrossRefGoogle Scholar
  27. Lee J, Saha PK et al (2008) Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci U S A 105(49):19229–19234PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lee KH, Ju UI et al (2014) The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBP alpha and C/EBP delta. Mol Cells 37(10):734–741PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lelliott CJ, Medina-Gomez G et al (2006) Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 4(11):e369PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lewandowska E, Zielinski A (2016) White adipose tissue dysfunction observed in obesity. Pol Merkur Lekarski 40(239):333–336PubMedGoogle Scholar
  31. Li E, Bestor TH et al (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926PubMedCrossRefGoogle Scholar
  32. Li HX, Xiao L et al (2010) Review: epigenetic regulation of adipocyte differentiation and adipogenesis. J Zhejiang Univ Sci B 11(10):784–791PubMedPubMedCentralCrossRefGoogle Scholar
  33. Li J, Zhang N et al (2013) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e832PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lidell ME, Betz MJ et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19(5):631–634PubMedCrossRefGoogle Scholar
  35. Lizcano F, Romero C et al (2011) Regulation of adipogenesis by nuclear receptor PPARgamma is modulated by the histone demethylase JMJD2C. Genet Mol Biol 34(1):19–24PubMedPubMedCentralGoogle Scholar
  36. Londono Gentile T, Lu C et al (2013) DNMT1 is regulated by ATP-citrate lyase and maintains methylation patterns during adipocyte differentiation. Mol Cell Biol 33(19):3864–3878PubMedPubMedCentralCrossRefGoogle Scholar
  37. Luo Y, Burrington CM et al (2016) Metabolic phenotype and adipose and liver features in a high-fat western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 310(6):E418–E439PubMedCrossRefGoogle Scholar
  38. Matsumura Y, Nakaki R et al (2015) H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol Cell 60(4):584–596PubMedCrossRefGoogle Scholar
  39. Milite C, Feoli A et al (2016) The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics 8:102PubMedPubMedCentralCrossRefGoogle Scholar
  40. Musri MM, Corominola H et al (2006) Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J Biol Chem 281(25):17180–17188PubMedCrossRefGoogle Scholar
  41. Musri MM, Carmona MC et al (2010) Histone demethylase LSD1 regulates adipogenesis. J Biol Chem 285(39):30034–30041PubMedPubMedCentralCrossRefGoogle Scholar
  42. Okano M, Bell DW et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRefGoogle Scholar
  43. Okuno Y, Ohtake F et al (2013) Epigenetic regulation of adipogenesis by PHF2 histone demethylase. Diabetes 62(5):1426–1434PubMedPubMedCentralCrossRefGoogle Scholar
  44. Parrillo L, Costa V et al (2016) Hoxa5 undergoes dynamic DNA methylation and transcriptional repression in the adipose tissue of mice exposed to high-fat diet. Int J Obes 40(6):929–937CrossRefGoogle Scholar
  45. Roganovic J, Petrovic N et al (2014) Effect of neuropeptide Y on norepinephrine-induced constriction in the rabbit facial artery after carotid artery occlusion. Vojnosanit Pregl 71(6):571–575PubMedCrossRefGoogle Scholar
  46. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896PubMedCrossRefGoogle Scholar
  47. Ruthenburg AJ, Allis CD et al (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25(1):15–30PubMedCrossRefGoogle Scholar
  48. Sakamoto H, Kogo Y et al (2008) Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem Biophys Res Commun 366(2):360–366PubMedCrossRefGoogle Scholar
  49. Seale P, Bjork B et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shao ML, Ishibashi J et al (2016) Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab 23(6):1167–1184PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sharma NK, Varma V et al (2015) Obesity associated modulation of miRNA and co-regulated target transcripts in human adipose tissue of non-diabetic subjects. Microrna 4(3):194–204PubMedPubMedCentralCrossRefGoogle Scholar
  52. Stine RR, Shapira SN et al (2016) EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab 5(1):57–65PubMedCrossRefGoogle Scholar
  53. Takada I, Mihara M et al (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol 9(11):1273–1285PubMedCrossRefGoogle Scholar
  54. Tang QQ, Otto TC et al (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A 101(26):9607–9611PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tateishi K, Okada Y et al (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458(7239):757–761PubMedPubMedCentralCrossRefGoogle Scholar
  56. Torres-Andrade R, Moldenhauer R et al (2014) The increase in body weight induced by lack of methyl CpG binding protein-2 is associated with altered leptin signalling in the hypothalamus. Exp Physiol 99(9):1229–1240PubMedCrossRefGoogle Scholar
  57. Ussar S, Lee KY et al (2014) ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med 6(247):247ra103PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wakabayashi K, Okamura M et al (2009) The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol 29(13):3544–3555PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wang L, Jin Q et al (2010) Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci U S A 107(16):7317–7322PubMedPubMedCentralCrossRefGoogle Scholar
  60. Wang L, Xu S et al (2013) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32(1):45–59PubMedCrossRefGoogle Scholar
  61. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486PubMedCrossRefGoogle Scholar
  62. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68PubMedPubMedCentralCrossRefGoogle Scholar
  63. Xia L, Wang C et al (2014) Time-specific changes in DNA methyltransferases associated with the leptin promoter during the development of obesity. Nutr Hosp 30(6):1248–1255PubMedGoogle Scholar
  64. Yang Q, Liang X et al (2016a) AMPK/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab 24(4):542–554PubMedPubMedCentralCrossRefGoogle Scholar
  65. Yang XS, Wu R et al (2016b) DNA methylation biphasically regulates 3T3-L1 preadipocyte differentiation. Mol Endocrinol 30(6):677–687PubMedPubMedCentralCrossRefGoogle Scholar
  66. Zha L, Li F et al (2015) The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation. J Biol Chem 290(41):25151–25163PubMedPubMedCentralCrossRefGoogle Scholar
  67. Zych J, Stimamiglio MA et al (2013) The epigenetic modifiers 5-aza-2′-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Braz J Med Biol Res 46(5):405–416PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Life SciencesWuhan UniversityWuhanChina
  2. 2.Tongji School of PharmacyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations