Energy Metabolism and Epigenetics

  • Scott J. BultmanEmail author
Reference work entry


The mammalian genome is packaged as chromatin, which influences all enzyme-catalyzed processes that utilize DNA as a template including transcription, DNA replication, the DNA damage response and repair, and meiotic recombination. This is why epigenetic writers, readers, and erasers are so crucial for the regulation of genome function. Epigenetic mechanisms are tightly integrated with energy metabolism. For example, methyltransferase and acetyltransferase enzymes that modify DNA and histones require intermediary energy metabolites such as S-adenosylmethionine and acetyl-CoA as essential co-factors. To extend the analogy, epigenetic writers require epigenetic ink. The underlying logic of this relationship is that nutrient availability and cellular metabolism can regulate gene expression and genome function to maintain homeostasis. This review will focus on the functional interplay between epigenetic and metabolic mechanisms and discuss why this is relevant for health and disease prevention with an emphasis on cancer.


DNA methylation Histone methylation Histone acetylation Energy metabolites SAM Acetyl CoA NAD+ TETs Sirtuins HATs 

List of Abbreviations


Cytosine-guanine dinucleotide with phosphodiester (p) linkage


DNA methyltransferase




1 carbon


Differentially methylated region


Chromatin immunoprecipitation


Single-nucleotide polymorphism


Insulin-like growth factor


Reactive oxygen species


Ten-eleven translocation


α Ketoglutarate


Tricarboxylic acid


Jumonji C domain


Flavin adenine dinucleotide


Nicotinamide adenine dinucleotide


Adenosine triphosphate


Posttranslational modification


Histone acetyltransferase


Histone deacetylase




5′ adenosine monophosphate (AMP)-activated protein kinase


Poly-ADP-ribose polymerase


Mechanistic target of rapamycin


  1. Amarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D, Saffery R, Prescott SL (2014) Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J 28:4068PubMedPubMedCentralGoogle Scholar
  2. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322PubMedGoogle Scholar
  3. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872PubMedPubMedCentralGoogle Scholar
  4. Binder AM, Michels KB (2013) The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach. BMC Bioinf 14:353Google Scholar
  5. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedGoogle Scholar
  6. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880PubMedGoogle Scholar
  7. Bultman SJ (2015) Metabolic inputs into epigenetics. In: Chadwick BP (ed) Epigenetics: current research and emerging trends. Caister Academic Press, Norfolk, pp 307–326Google Scholar
  8. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205PubMedPubMedCentralGoogle Scholar
  9. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485PubMedPubMedCentralGoogle Scholar
  10. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437PubMedPubMedCentralGoogle Scholar
  11. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedPubMedCentralGoogle Scholar
  12. Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847PubMedPubMedCentralGoogle Scholar
  13. Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003PubMedPubMedCentralGoogle Scholar
  14. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096PubMedPubMedCentralGoogle Scholar
  15. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 509:397–401Google Scholar
  16. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469PubMedPubMedCentralGoogle Scholar
  17. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC et al (2014) Acetate dependence of tumors. Cell 159:1591–1602PubMedPubMedCentralGoogle Scholar
  18. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400SPubMedGoogle Scholar
  19. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38PubMedPubMedCentralGoogle Scholar
  20. Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103:17308–17312PubMedPubMedCentralGoogle Scholar
  21. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835PubMedGoogle Scholar
  22. Dobosy JR, Fu VX, Desotelle JA, Srinivasan R, Kenowski ML, Almassi N, Weindruch R, Svaren J, Jarrard DF (2008) A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate 68:1187–1195PubMedGoogle Scholar
  23. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061PubMedPubMedCentralGoogle Scholar
  24. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446PubMedPubMedCentralGoogle Scholar
  25. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526PubMedPubMedCentralGoogle Scholar
  26. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48:612–626PubMedPubMedCentralGoogle Scholar
  27. Dunstan JA, West C, McCarthy S, Metcalfe J, Meldrum S, Oddy WH, Tulic MK, D’Vaz N, Prescott SL (2012) The relationship between maternal folate status in pregnancy, cord blood folate levels, and allergic outcomes in early childhood. Allergy 67:50–57PubMedGoogle Scholar
  28. Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444PubMedPubMedCentralGoogle Scholar
  29. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567PubMedPubMedCentralGoogle Scholar
  30. Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6:37–46PubMedGoogle Scholar
  31. Friso S, Lamon-Fava S, Jang H, Schaefer EJ, Corrocher R, Choi SW (2007) Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women. Br J Nutr 97:617–621PubMedGoogle Scholar
  32. Fryer AA, Emes RD, Ismail KM, Haworth KE, Mein C, Carroll WD, Farrell WE (2011) Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6:86–94PubMedPubMedCentralGoogle Scholar
  33. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K et al (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557–560PubMedGoogle Scholar
  34. Goren A, Tabib A, Hecht M, Cedar H (2008) DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 22:1319–1324PubMedPubMedCentralGoogle Scholar
  35. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357PubMedPubMedCentralGoogle Scholar
  36. Guarente L (2011) The logic linking protein acetylation and metabolism. Cell Metab 14:151–153PubMedGoogle Scholar
  37. Haberg SE, London SJ, Stigum H, Nafstad P, Nystad W (2009) Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 94:180–184PubMedGoogle Scholar
  38. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482PubMedPubMedCentralGoogle Scholar
  39. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321PubMedGoogle Scholar
  40. Haycock PC (2009) Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 81:607–617PubMedGoogle Scholar
  41. Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10:819–823PubMedPubMedCentralGoogle Scholar
  42. Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758PubMedPubMedCentralGoogle Scholar
  43. Holland ML, Lowe R, Caton PW, Gemma C, Carbajosa G, Danson AF, Carpenter AA, Loche E, Ozanne SE, Rakyan VK (2016) Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 353:495–498PubMedPubMedCentralGoogle Scholar
  44. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238PubMedPubMedCentralGoogle Scholar
  45. Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12:1925–1956PubMedGoogle Scholar
  46. Huletsky A, Niedergang C, Frechette A, Aubin R, Gaudreau A, Poirier GG (1985) Sequential ADP-ribosylation pattern of nucleosomal histones. ADP-ribosylation of nucleosomal histones. Eur J Biochem 146:277–285PubMedGoogle Scholar
  47. Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ et al (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23:450–463PubMedPubMedCentralGoogle Scholar
  48. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69PubMedPubMedCentralGoogle Scholar
  49. Katoh Y, Ikura T, Hoshikawa Y, Tashiro S, Ito T, Ohta M, Kera Y, Noda T, Igarashi K (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell 41:554–566PubMedGoogle Scholar
  50. Kiefte-de Jong JC, Timmermans S, Jaddoe VW, Hofman A, Tiemeier H, Steegers EA, de Jongste JC, Moll HA (2012) High circulating folate and vitamin B-12 concentrations in women during pregnancy are associated with increased prevalence of atopic dermatitis in their offspring. J Nutr 142:731–738PubMedGoogle Scholar
  51. Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, Quezado M, Smith WI Jr, Jahromi MS, Xekouki P et al (2013) Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:648–657PubMedPubMedCentralGoogle Scholar
  52. Kim YI (2007a) Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 51:267–292PubMedGoogle Scholar
  53. Kim YI (2007b) Folic acid fortification and supplementation – good for some but not so good for others. Nutr Rev 65:504–511PubMedGoogle Scholar
  54. Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209PubMedGoogle Scholar
  55. Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM, Boukhali M, Hayward MC, Li YY, Chen T et al (2016) LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539:390–395PubMedPubMedCentralGoogle Scholar
  56. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil TC, Gong F, Wang YC et al (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258–262PubMedPubMedCentralGoogle Scholar
  57. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M et al (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218PubMedPubMedCentralGoogle Scholar
  58. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379PubMedPubMedCentralGoogle Scholar
  59. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S et al (2014a) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319PubMedPubMedCentralGoogle Scholar
  60. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X et al (2014b) Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510:547–551PubMedPubMedCentralGoogle Scholar
  61. Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML (1997) Alterations of DNA methylation by glutathione depletion. Cancer Lett 120:149–156PubMedGoogle Scholar
  62. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P et al (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752PubMedGoogle Scholar
  63. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98PubMedPubMedCentralGoogle Scholar
  64. Li R, Grimm SA, Chrysovergis K, Kosak J, Wang X, Du Y, Burkholder A, Janardhan K, Mav D, Shah R et al (2014) Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. Cell Metab 19:702–711PubMedPubMedCentralGoogle Scholar
  65. Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518PubMedPubMedCentralGoogle Scholar
  66. Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4:500–511PubMedPubMedCentralGoogle Scholar
  67. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625PubMedGoogle Scholar
  68. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478PubMedPubMedCentralGoogle Scholar
  69. Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult health. Annu Rev Public Health 32:237–262PubMedGoogle Scholar
  70. Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2011) Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect 119:977–982PubMedPubMedCentralGoogle Scholar
  71. Martinez D, Pentinat T, Ribo S, Daviaud C, Bloks VW, Cebria J, Villalmanzo N, Kalko SG, Ramon-Krauel M, Diaz R et al (2014) In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered lxra DNA methylation. Cell Metab 19:941–951PubMedGoogle Scholar
  72. Mavrakis KJ, McDonald ER 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G et al (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351:1208–1213PubMedGoogle Scholar
  73. Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH (2010) Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 24:184–195PubMedPubMedCentralGoogle Scholar
  74. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828PubMedPubMedCentralGoogle Scholar
  75. Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542PubMedGoogle Scholar
  76. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318PubMedGoogle Scholar
  77. Nabel CS, Kohli RM (2011) Molecular biology. Demystifying DNA demethylation. Science 333:1229–1230PubMedGoogle Scholar
  78. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657PubMedGoogle Scholar
  79. Ng F, Tang BL (2013) Sirtuins’ modulation of autophagy. J Cell Physiol 228:2262–2270PubMedGoogle Scholar
  80. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–966PubMedGoogle Scholar
  81. Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4:275–292PubMedGoogle Scholar
  82. Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda MC, Snyder FF, Gravel RA, Cross JC et al (2013) Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155:81–93PubMedGoogle Scholar
  83. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352PubMedGoogle Scholar
  84. Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 62:2309–2319PubMedGoogle Scholar
  85. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354:481–484PubMedPubMedCentralGoogle Scholar
  86. Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24:469–480PubMedGoogle Scholar
  87. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654PubMedPubMedCentralGoogle Scholar
  88. Sassone-Corsi P (2012) Minireview: NAD+, a circadian metabolite with an epigenetic twist. Endocrinology 153:1–5PubMedGoogle Scholar
  89. Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20:1687–1696PubMedPubMedCentralGoogle Scholar
  90. Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199PubMedPubMedCentralGoogle Scholar
  91. Shepard BD, Tuma PL (2009) Alcohol-induced protein hyperacetylation: mechanisms and consequences. World J Gastroenterol 15:1219–1230PubMedPubMedCentralGoogle Scholar
  92. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661PubMedPubMedCentralGoogle Scholar
  93. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD et al (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214PubMedGoogle Scholar
  94. Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226PubMedGoogle Scholar
  95. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104:19351–19356PubMedPubMedCentralGoogle Scholar
  96. Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87:517–533PubMedGoogle Scholar
  97. Soga T (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 104:275–281PubMedGoogle Scholar
  98. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986PubMedGoogle Scholar
  99. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, Slagboom PE, Heijmans BT (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 4:e7845PubMedPubMedCentralGoogle Scholar
  100. Supic G, Jagodic M, Magic Z (2013) Epigenetics: a new link between nutrition and cancer. Nutr Cancer 65:781–792PubMedGoogle Scholar
  101. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97PubMedGoogle Scholar
  102. Takamura Y, Nomura G (1988) Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134:2249–2253PubMedGoogle Scholar
  103. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902PubMedPubMedCentralGoogle Scholar
  104. Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68PubMedPubMedCentralGoogle Scholar
  105. Thirstrup K, Christensen S, Moller HA, Ritzen A, Bergstrom AL, Sager TN, Jensen HS (2011) Endogenous 2-oxoglutarate levels impact potencies of competitive HIF prolyl hydroxylase inhibitors. Pharmacol Res 64:268–273PubMedGoogle Scholar
  106. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053PubMedPubMedCentralGoogle Scholar
  107. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483PubMedPubMedCentralGoogle Scholar
  108. Ulrich CM, Potter JD (2007) Folate and cancer – timing is everything. JAMA 297:2408–2409PubMedGoogle Scholar
  109. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralGoogle Scholar
  110. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedPubMedCentralGoogle Scholar
  111. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44:401–406PubMedGoogle Scholar
  112. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080PubMedPubMedCentralGoogle Scholar
  113. Whitrow MJ, Moore VM, Rumbold AR, Davies MJ (2009) Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol 170:1486–1493PubMedGoogle Scholar
  114. Willett W (2008) Nutrition and cancer: the search continues. Nutr Cancer 60:557–559PubMedGoogle Scholar
  115. Wright RH, Lioutas A, Le Dily F, Soronellas D, Pohl A, Bonet J, Nacht AS, Samino S, Font-Mateu J, Vicent GP et al (2016) ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352:1221–1225PubMedGoogle Scholar
  116. Wu K, Platz EA, Willett WC, Fuchs CS, Selhub J, Rosner BA, Hunter DJ, Giovannucci E (2009) A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. Am J Clin Nutr 90:1623–1631PubMedPubMedCentralGoogle Scholar
  117. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y et al (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338PubMedPubMedCentralGoogle Scholar
  118. Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, He G, Sham P, Susser E, St Clair D et al (2009) Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–1961 Chinese famine. Schizophr Bull 35:568–576PubMedPubMedCentralGoogle Scholar
  119. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedPubMedCentralGoogle Scholar
  120. Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123:3652–3658PubMedPubMedCentralGoogle Scholar
  121. Zeisel SH (2009) Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 89:1488S–1493SPubMedPubMedCentralGoogle Scholar
  122. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443PubMedGoogle Scholar
  123. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004PubMedPubMedCentralGoogle Scholar
  124. Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeneticsLineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations