Association Between MicroRNA Expression and Vitamin C in Ovarian Cells

  • Yong Jin Kim
  • Yoon Young Kim
  • Seung-Yup KuEmail author
Reference work entry


Vitamin C (l-ascorbic acid) is an essential, water-soluble micronutrient that exists predominantly as the ascorbate anion under physiological pH conditions and has been implicated in several processes of reproduction of reproductive organ cells. Several studies described the regulatory roles of vitamin C in various cellular developmental processes, via microRNA mechanism, using in vivo and in vitro animal models. To date, some specific microRNAs have been regarded as candidates that have regulatory roles in vitamin C metabolism. Many questions should be further investigated, such as the following: whether and how vitamin C directly regulates epigenetic modifiers, whether vitamin C regulates gene and miRNA promoters through specific signaling pathways, and whether vitamin C-induced DNA demethylation occurs.


microRNA Vitamin C Follicle development 

List of Abbreviations


Micro molarity


Granulosa cell


Glucose transporters


l-gulono-γ-lactone oxidase


High-density lipoprotein 3


Insulin-like growth factor 1


Institute of Medicine


In vitro maturation




Meiosis II




Osteogenic disorder Shionogi


Recommended dietary allowances


Sodium-dependent vitamin C transporters


  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  2. Beach MJ, Addiss DG, Roberts JM, Lammie PJ (1999) Treatment of trichuris infection with albendazole. Lancet 353:237–238CrossRefGoogle Scholar
  3. Burns JJ, Moltz A, Peyser P (1956) Missing step in guinea pigs required for the biosynthesis of l-ascorbic acid. Science 124:1148–1149CrossRefGoogle Scholar
  4. Chan AC (1993) Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol 71:725–731CrossRefGoogle Scholar
  5. Colagar AH, Marzony ET (2009) Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr 45:144–149CrossRefGoogle Scholar
  6. Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y (2015) Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J 282:685–699CrossRefGoogle Scholar
  7. Gould BS, Woessner JF (1957) Biosynthesis of collagen; the influence of ascorbic acid on the proline, hydroxyproline, glycine, and collagen content of regenerating guinea pig skin. J Biol Chem 226:289–300PubMedGoogle Scholar
  8. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, Ubaldi F, Rienzi L, Tesarik J (2005a) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594CrossRefGoogle Scholar
  9. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005b) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353CrossRefGoogle Scholar
  10. Hadley KB, Sato PH (1989) Catalytic activity of administered gulonolactone oxidase polyethylene glycol conjugates. Enzyme 42:225–234CrossRefGoogle Scholar
  11. Jimenez CR, Araujo VR, Penitente-Filho JM, de Azevedo JL, Silveira RG, Torres CA (2016) The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro. Theriogenology 85:1019–1029CrossRefGoogle Scholar
  12. Kawai T, Nishikimi M, Ozawa T, Yagi K (1992) A missense mutation of l-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize l-ascorbic acid. J Biol Chem 267:21973–21976PubMedGoogle Scholar
  13. Kim YJ, Ku SY, Rosenwaks Z, Liu HC, Chi SW, Kang JS, Lee WJ, Jung KC, Kim SH, Choi YM et al (2010) MicroRNA expression profiles are altered by gonadotropins and vitamin C status during in vitro follicular growth. Reprod Sci 17:1081–1089CrossRefGoogle Scholar
  14. Kim H, Bae S, Yu Y, Kim Y, Kim HR, Hwang YI, Kang JS, Lee WJ (2012) The analysis of vitamin C concentration in organs of gulo(-/-) mice upon vitamin C withdrawal. Immune Netw 12:18–26CrossRefGoogle Scholar
  15. Kim YJ, Ku S-Y, Kim YY, Liu HC, Chi SW, Kim SH, Choi YM, Kim JG, Moon SY (2013) MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod 28:3050–3061CrossRefGoogle Scholar
  16. Kim SM, Lim SM, Yoo JA, Woo MJ, Cho KH (2015) Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food Funct 6:3604–3612CrossRefGoogle Scholar
  17. Kim YJ, Ku SY, Kim YY, Suh CS, Kim SH, Choi YM (2016) MicroRNA profile of granulosa cells after ovarian stimulation differs according to maturity of retrieved oocytes. Geburtshilfe Frauenheilkd 76:704–708CrossRefGoogle Scholar
  18. Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080CrossRefGoogle Scholar
  19. Lee CW, Wang XD, Chien KL, Ge Z, Rickman BH, Rogers AB, Varro A, Whary MT, Wang TC, Fox JG (2008a) Vitamin C supplementation does not protect l-gulono-gamma-lactone oxidase-deficient mice from Helicobacter pylori-induced gastritis and gastric premalignancy. Int J Cancer 122:1068–1076CrossRefGoogle Scholar
  20. Lee SK, Kang JS, Jung da J, Hur DY, Kim JE, Hahm E, Bae S, Kim HW, Kim D, Cho BJ et al (2008b) Vitamin C suppresses proliferation of the human melanoma cell SK-MEL-2 through the inhibition of cyclooxygenase-2 (COX-2) expression and the modulation of insulin-like growth factor II (IGF-II) production. J Cell Physiol 216:180–188CrossRefGoogle Scholar
  21. Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184CrossRefGoogle Scholar
  22. Li Y, Shi CX, Mossman KL, Rosenfeld J, Boo YC, Schellhorn HE (2008) Restoration of vitamin C synthesis in transgenic Gulo-/- mice by helper-dependent adenovirus-based expression of gulonolactone oxidase. Hum Gene Ther 19:1349–1358CrossRefGoogle Scholar
  23. Linster CL, Van Schaftingen E (2007) Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22CrossRefGoogle Scholar
  24. Luck MR, Jeyaseelan I, Scholes RA (1995) Ascorbic acid and fertility. Biol Reprod 52:262–266CrossRefGoogle Scholar
  25. Maeda N, Hagihara H, Nakata Y, Hiller S, Wilder J, Reddick R (2000) Aortic wall damage in mice unable to synthesize ascorbic acid. Proc Natl Acad Sci U S A 97:841–846CrossRefGoogle Scholar
  26. Mathews F, Yudkin P, Neil A (1999) Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ (Clinical research ed) 319:339–343CrossRefGoogle Scholar
  27. Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N (2008) Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 132:1039–1048CrossRefGoogle Scholar
  28. Murray AA, Molinek MD, Baker SJ, Kojima FN, Smith MF, Hillier SG, Spears N (2001) Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro. Reproduction 121:89–96CrossRefGoogle Scholar
  29. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382CrossRefGoogle Scholar
  30. Nishikimi M, Koshizaka T, Ozawa T, Yagi K (1988) Occurrence in humans and guinea pigs of the gene related to their missing enzyme l-gulono-gamma-lactone oxidase. Arch Biochem Biophys 267:842–846CrossRefGoogle Scholar
  31. Patak P, Willenberg HS, Bornstein SR (2004) Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr Res 30:871–875CrossRefGoogle Scholar
  32. Pollock JI, Mullin RJ (1987) Vitamin C biosynthesis in prosimians: evidence for the anthropoid affinity of Tarsius. Am J Phys Anthropol 73:65–70CrossRefGoogle Scholar
  33. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefGoogle Scholar
  34. Saugstad OD (1988) Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production. Pediatr Res 23:143–150CrossRefGoogle Scholar
  35. Saugstad OD (2001) Update on oxygen radical disease in neonatology. Curr Opin Obstet Gynecol 13:147–153CrossRefGoogle Scholar
  36. Shima A, Pham J, Blanco E, Barton ER, Sweeney HL, Matsuda R (2011) IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures. Exp Cell Res 317:356–366CrossRefGoogle Scholar
  37. Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by twist and is required in muscles during larval growth. Genes Dev 19:2343–2354CrossRefGoogle Scholar
  38. Streeter ML, Rosso P (1981) Transport mechanisms for ascorbic acid in the human placenta. Am J Clin Nutr 34:1706–1711CrossRefGoogle Scholar
  39. Thomas FH, Leask R, Srsen V, Riley SC, Spears N, Telfer EE (2001) Effect of ascorbic acid on health and morphology of bovine preantral follicles during long-term culture. Reproduction 122:487–495CrossRefGoogle Scholar
  40. Venturelli S, Sinnberg TW, Berger A, Noor S, Levesque MP, Bocker A, Niessner H, Lauer UM, Bitzer M, Garbe C et al (2014) Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol 4:227CrossRefGoogle Scholar
  41. Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25:105–125CrossRefGoogle Scholar
  42. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795CrossRefGoogle Scholar
  43. Yu R, Schellhorn HE (2013) Recent applications of engineered animal antioxidant deficiency models in human nutrition and chronic disease. J Nutr 143:1–11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyKorea University Medical College, Korea University Guro HospitalSeoulSouth Korea
  2. 2.Department of Obstetrics and GynecologySeoul National University College of Medicine, Seoul National University HospitalSeoulSouth Korea

Personalised recommendations