Advertisement

Impact of Epigenetic Mechanisms on the Regulation of Gene Expression During Intrauterine Programming of the Endocrine Pancreas

  • Ana Laura Ortega-Márquez
  • Angélica Morales-Miranda
  • Sumiko MorimotoEmail author
Reference work entry

Abstract

The pancreas develops due to the function of many interconnected transcription factors and the regulation provided by them. Among the elements that regulate transcription are epigenetic factors, DNA methylation, histone modifications, and noncoding RNAs. Some of these factors regulate the differentiation of endocrine and exocrine tissue, cell fate determination into the distinct types of the endocrine cells (especially alpha and beta), and the maintenance of cell identity. We herein summarize the epigenetic mechanisms that occur during the normal development of the pancreas and also during negative programming due to the effects of some adverse environmental factors in the uterus such as unbalanced maternal nutrition. All the current data come from animal models because of the ability to control variables, the availability of organisms, and the relatively short life cycle. By means of specific cases, we present the importance of epigenetic processes in the normal and altered pancreatic development and function.

Keywords

Developmental programming Experimental models Pancreatic beta cells Type 2 diabetes Transcription factors Gene expression Epigenetic modifications Methylation Acetylation Undernutrition Intrauterine growth restriction 

List of Abbreviations

Afp

Alpha fetoprotein gene

Alb

Albumin gene

ARX

Aristaless related homeobox

BETA2/NEUROD

Neurogenic differentiation

CREB

cAMP-response element binding protein

DNA

Deoxyribonucleic acid

Ezh2

Enhancer of zeste 2 polycomb repressive complex 2 subunit

FOXA2

Forkhead box A2

GK

Glucokinase

GLPR1

Glucagon-like peptide receptor 1

GLUT2

Glucose transporter 2

GSIS

Glucose-stimulated insulin secretion

HDAC1

Histone deacetylase 1

HNF

Hepatocyte nuclear factor

H3K27me3

Trimethylation of lysine 27 at histone 3

H3K9K14ac

Acetylation of lysine 9 and 14 at histone 3

IA2

PTPRN, protein tyrosine phosphatase, receptor type N

IGF

Insulin-like growth factor

IR

Insulin receptor

IRS

Insulin receptor substrate

ISL1

Islet transcription factor 1

IUGR

Intrauterine growth restriction

KATP channels

ATP-regulated potassium channels

MAF

Musculoaponeurotic fibrosarcoma transcription factor

MECP2

Methyl CpG binding protein 2

miRNA

MicroRNA

miR-375

MicroRNA 375

mTOR

Mechanistic target of rapamycin

NGN3

Neurogenin 3

NKX

Homeobox protein NK

PAX4–6

Paired box 4–6

PDK1

Pyruvatedehydrogenase kinase 1

PDX1

Pancreatic and duodenal homeobox 1

PI3K

Phosphatidylinositol-4, 5-bisphosphate 3-kinase

PPARGC1A

Peroxisome proliferator activated receptor gamma coactivator-1 alpha

PPY

Pancreatic polypeptide

PRMT6

Protein arginine methyltransferase 6

RNA

Ribonucleic acid

Sin3A

SIN3 transcription regulator family member A

SS

Somatostatin

Ttr

Transthyretin gene

T2D

Type 2 diabetes

USF1

Upstream transcription factor 1

References

  1. Abuzgaia AM, Hardy DB, Arany E (2015) Regulation of postnatal pancreatic Pdx1 and downstream target genes after gestational exposure to protein restriction in rats. Reproduction 149:293–303.  https://doi.org/10.1530/REP-14-0245CrossRefPubMedGoogle Scholar
  2. Alejandro EU, Gregg B, Wallen T et al (2014) Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 124:4395–4410.  https://doi.org/10.1172/JCI74237CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnes L, Sussel L (2015) Epigenetic modifications and long non-coding RNAs influence pancreas development and function. Trends Genet 31:290–299.  https://doi.org/10.1016/j.tig.2015.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benitez CM, Goodyer WR, Kim SK (2012) Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 4:pii: a012401.  https://doi.org/10.1101/cshperspect
  5. Burgio E, Lopomo A, Migliore L (2015) Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep 42:799–818.  https://doi.org/10.1007/s11033-014-3751-zCrossRefPubMedGoogle Scholar
  6. Cerf ME, Chapman CS, Louw J (2012) High-fat programming of hyperglycemia, hyperinsulinemia, insulin resistance, hyperleptinemia, and altered islet architecture in 3-month-old wistar rats. ISRN Endocrinol 2012:627270.  https://doi.org/10.5402/2012/627270CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi J, Li C, McDonald TJ et al (2011) Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction. Am J Physiol Regul Integr Comp Physiol 301:R757–R762.  https://doi.org/10.1152/ajpregu.00051.2011CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daniel ZC, Akyol A, McMullen S et al (2014) Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway. Genes Nutr 9:365.  https://doi.org/10.1007/s12263-013-0365-3CrossRefPubMedGoogle Scholar
  9. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ (1991) Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 40(Suppl 2):115–120CrossRefGoogle Scholar
  10. Dhawan S, Georgia S, Tschen SI et al (2011) Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20:419–429.  https://doi.org/10.1016/j.devcel.2011.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dumortier O, Blondeau B, Duvillié B et al (2007) Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or low-energy diet. Diabetologia 50:2495–2503.  https://doi.org/10.1007/s00125-007-0811-0CrossRefPubMedGoogle Scholar
  12. Dumortier O, Hinault C, Gautier N et al (2014) Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 63:3416–3427.  https://doi.org/10.2337/db13-1431CrossRefPubMedGoogle Scholar
  13. Duque-Guimarães DE, Ozanne SE (2013) Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 24:525–535.  https://doi.org/10.1016/j.tem.2013.05.006CrossRefPubMedGoogle Scholar
  14. Ford SP, Zhang L, Zhu M et al (2009) Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences. Am J Physiol Regul Integr Comp Physiol 297:R835–R843.  https://doi.org/10.1152/ajpregu.00072.2009CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garofano A, Czernichow P, Bréant B (1998) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 41:1114–1120.  https://doi.org/10.1007/s001250051038CrossRefPubMedGoogle Scholar
  16. Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35.  https://doi.org/10.1016/j.ydbio.2008.10.024CrossRefPubMedGoogle Scholar
  17. Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858.  https://doi.org/10.1126/science.1064921CrossRefPubMedGoogle Scholar
  18. Liu HW, Mahmood S, Srinivasan M et al (2013) Developmental programming in skeletal muscle in response to overnourishment in the immediate postnatal life in rats. J Nutr Biochem 24:1859–1869.  https://doi.org/10.1016/j.jnutbio.2013.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  19. Morimoto S, Sosa TC, Calzada L et al (2012a) Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation. J Dev Orig Health Dis 3:483–488.  https://doi.org/10.1017/S2040174412000463CrossRefPubMedGoogle Scholar
  20. Morimoto S, Calzada L, Sosa TC, Reyes-Castro LA, Rodriguez-González GL, Morales A, Nathanielsz PW, Zambrano E (2012b) Emergence of ageing-related changes in insulin secretion by pancreatic islets of male rat offspring of mothers fed a low-protein diet. Br J Nutr 107:1562–1565.  https://doi.org/10.1017/S0007114511004855CrossRefPubMedGoogle Scholar
  21. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530–565.  https://doi.org/10.1002/dvdy.22584CrossRefPubMedGoogle Scholar
  22. Park JH, Stoffers DA, Nicholls RD et al (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324.  https://doi.org/10.1172/JCI33655CrossRefPubMedPubMedCentralGoogle Scholar
  23. Remacle C, Dumortier O, Bol V et al (2007) Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 9(Suppl 2):196–209.  https://doi.org/10.1111/j.1463-1326.2007.00790.xCrossRefPubMedGoogle Scholar
  24. Reusens B, Remacle C (2006) Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 38:913–922.  https://doi.org/10.1016/j.biocel.2005.10.012CrossRefPubMedGoogle Scholar
  25. Rhodes P, Craigon J, Gray C et al (2009) Adult-onset obesity reveals prenatal programming of glucose-insulin sensitivity in male sheep nutrient restricted during late gestation. PLoS One 4:e7393.  https://doi.org/10.1371/journal.pone.0007393CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sandovici I, Smith NH, Nitert MD et al (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108:5449–5454.  https://doi.org/10.1073/pnas.1019007108CrossRefPubMedPubMedCentralGoogle Scholar
  27. Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286.  https://doi.org/10.2337/diabetes.50.10.2279CrossRefGoogle Scholar
  28. Slack JM (1995) Developmental biology of the pancreas. Development 121:1569–1580PubMedGoogle Scholar
  29. Sosa-Larios TC, Cerbón MA, Morimoto S (2015) Epigenetic alterations caused by nutritional stress during fetal programming of the endocrine pancreas. Arch Med Res 46:93–100.  https://doi.org/10.1016/j.arcmed.2015.01.005CrossRefPubMedGoogle Scholar
  30. Spaeth JM, Walker EM, Stein R (2016) Impact of Pdx1-associated chromatin modifiers on islet β-cells. Diabetes Obes Metab 1:123–127.  https://doi.org/10.1111/dom.12730CrossRefGoogle Scholar
  31. Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B (2009) Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 297:R1516–R1525.  https://doi.org/10.1152/ajpregu.00280.2009CrossRefPubMedGoogle Scholar
  32. Todd SE, Oliver MH, Jaquiery AL et al (2009) Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr Res 65:409–413.  https://doi.org/10.1203/PDR.0b013e3181975efaCrossRefPubMedGoogle Scholar
  33. Wang W, Shi Q, Guo T et al (2016) PDX1 and ISL1 differentially coordinate with epigenetic modifications to regulate insulin gene expression in varied glucose concentrations. Mol Cell Endocrinol 15:38–48.  https://doi.org/10.1016/j.mce.2016.03.019CrossRefGoogle Scholar
  34. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300.  https://doi.org/10.1128/MCB.23.15.5293-5300CrossRefPubMedPubMedCentralGoogle Scholar
  35. Welker S, Gotz C, Servas C et al (2013) Glucose regulates protein kinase CK2 in pancreatic beta-cells and its interaction with PDX-1. Int J Biochem Cell Biol 5:2786e2795.  https://doi.org/10.1016/j.biocel.2013.10.002CrossRefGoogle Scholar
  36. Xu CR, Cole PA, Meyers DJ et al (2011) Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science 332:963–966.  https://doi.org/10.1126/science.1202845CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Laura Ortega-Márquez
    • 1
  • Angélica Morales-Miranda
    • 1
  • Sumiko Morimoto
    • 1
    Email author
  1. 1.Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”Mexico CityMexico

Personalised recommendations