Modulatory Role of Curcumin in miR-Mediated Regulation in Cancer and Non-cancer Diseases

  • Sayantani Chowdhury
  • Jyotirmoy Ghosh
  • Parames C. SilEmail author
Reference work entry


The dietary polyphenol curcumin imparts its pharmacological effects through anticancer, anti-inflammatory, antioxidant, and other mechanisms by inhibiting/modulating aberrant signaling molecules and transcription factors. MicroRNAs (miRs) modulate gene expression by regulating the degradation or translation repression of mRNA. The plethora of evidences over the past few years reflect the disruption of several fundamental regulatory mechanisms, such as carcinogenesis, cell proliferation, differentiation, programed cell death, angiogenesis, migration, invasion, etc., concerning miRs. Curcumin-mediated epigenetic alterations are the regulation of the expression of various pathogenic miRs in liver fibrosis, neurodegenerative diseases, diabetic nephropathy, ocular diseases, etc., on one hand and modulation of several tumor suppressor and oncogenic and epithelial-mesenchymal transition-suppressor microRNAs on the other hand. Based on recent evidences, miRs from miR-21, miR-26, miR-27, miR-28, miR-143, miR-199, miR-200 family, the let-7 family, etc., contribute to anomalies in both cancer and non-cancer diseases through aberrant signaling, tumor formation, and chemoresistance. In context to the significant role of miR homeostasis we summarize, in this book chapter, the findings based on in vitro and in vivo evidences on the regulatory role of curcumin on miR expression involved in cancer and non-cancer diseases.


Curcumin Epigenetics miR Cancer Non-cancer diseases 

List of Abbreviations

Akt/mTOR signaling

Protein kinase B (PKB), also known as Akt, is a serine-/threonine-specific protein kinase/mechanistic target of rapamycin signaling


Amine oxidase domain-containing protein 1/2

ARPE-19 cells

Human retinal pigment epithelial cell line


BAG family molecular chaperone regulator 2


B lymphoma Mo-MLV insertion region 1 homolog


Chick chorioallantoic membrane


Cyclin-dependent kinase inhibitor 1A


Collagen type I alpha 1 chain



CML xenograft

Chronic myeloid leukemia xenograft


DNA (cytosine-5-)-methyltransferase 3 beta


DKK3; dickkopf WNT signaling pathway inhibitor 3/SMAD family member n°4


Two-dimensional difference gel electrophoresis


DNA (cytosine-5)-methyltransferase 1

DU145 cell

Human Caucasian prostate cell; derived from metastatic site: brain

EMT-suppressive miRs

Epithelial-mesenchymal transition-suppressive microRNAs


Enhancer of zeste 2 polycomb repressive complex 2 subunit


V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3

HCT116 cell

Colon cancer cell line

HCT116-5FUR cell

5-fluorouracil-resistant cellosaurus cell line

HL-60 cell

Human promyelocytic leukemia cell

HAG cells

Human astroglial cells

HSC cells

Hematopoietic stem cells

HNG cells

Human neuronal glial cells


Human umbilical vein endothelial cells


Interleukin-1 beta

K562 cell

Chronic myelogenous leukemia cell

LAMA84 cell

Human leukocytic cell line

Let-7 family miRs

Lethal-7 family microRNAs


Messenger RNA


Matrix metallopeptidase 13

MAPK signaling

Mitogen-activated protein kinase signaling


Matrix metallopeptidase 9


Mus musculus microRNA


Nuclear factor kappa-light-chain-enhancer of activated B cells


NF-kappa-B-activating protein


Octamer-binding transcription factor 4


Phosphatase and tensin homolog

PTP1B protein

Protein-tyrosine phosphatase 1B protein


Platelet-derived growth factor beta


Protein kinase, catalytic subunit


Programmed Cell Death 4 (Neoplastic Transformation Inhibitor)


Polycomb repressive complexes


Phosphoinositide 3-kinase

PC cells

Prostate cancer cell

Rko cell

Rectal carcinoma cell line

SCID mice

Severe combined immunodeficient mice


SRY (sex determining region Y)-box 2

Sema6a protein

Semaphorin 6A protein


Signal transducer and activator of transcription 3


SUZ12 Polycomb repressive complex 2 subunit

SW480-5FUR cell

5-fluorouracil-resistant cellosaurus cell line

Sp proteins

Surfactant proteins


Tissue inhibitors of metalloproteinases


TG-interacting factor


Transforming growth factor beta


Transcriptional repressor GATA binding 1


Vascular endothelial growth factor


Vascular endothelial growth factor receptor 2

VEGFB gene

Vascular endothelial growth factor B gene

WT1 gene

Wilms tumor 1 gene


Zinc finger and BTB domain-containing 10


Zinc finger and BTB domain-containing 4

Y79 RB cell

Human Caucasian retinoblastoma cell line


  1. Angel-Morales G, Noratto G, Mertens-Talcott SU (2012) Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct 3:1286–1293CrossRefGoogle Scholar
  2. Bai Y, Wang W, Sun G, Zhang M, Dong J (2016) Curcumin inhibits angiogenesis by up-regulation of microRNA-1275 and microRNA-1246: a promising therapy for treatment of corneal neovascularization. Cell Prolif:751–762. 49PGoogle Scholar
  3. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, Liang S (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228CrossRefGoogle Scholar
  4. Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY (2015) Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun 467:872–878CrossRefGoogle Scholar
  5. Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D (2011) miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 25:1734–1745CrossRefGoogle Scholar
  6. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714CrossRefGoogle Scholar
  7. Ding XQ, Gu TT, Wang W, Song L, Chen TY, Xue QC, Zhou F, Li JM, Kong LD (2015) Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res 59:2355–2370CrossRefGoogle Scholar
  8. Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564CrossRefGoogle Scholar
  9. Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY, Wu JB, Xing CY, Yu K (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res CR 31:27CrossRefGoogle Scholar
  10. Guo H, Xu Y, Fu Q (2015) Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol: J Int Soc Oncodev Biol Med 36:8511–8517CrossRefGoogle Scholar
  11. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M (2014) Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 232:40–51CrossRefGoogle Scholar
  12. Hassan ZK, Al-Olayan EM (2012) Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev 13:5405–5408CrossRefGoogle Scholar
  13. He B, Hu M, Li SD, Yang XT, Lu YQ, Liu JX, Chen P, Shen ZQ (2013) Effects of geraniin on osteoclastic bone resorption and matrix metalloproteinase-9 expression. Bioorg Med Chem Lett 23:630–634CrossRefGoogle Scholar
  14. Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, Haque R (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544–560PubMedPubMedCentralGoogle Scholar
  15. Khor TO, Keum YS, Lin W, Kim JH, Hu R, Shen G, Xu C, Gopalakrishnan A, Reddy B, Zheng X, Conney AH, Kong AN (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66:613–621CrossRefGoogle Scholar
  16. Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U, Sommerhoff CP, Noonan DM, Nerlich AG, Fontana L, Bachmeier BE (2014) miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and −2. Mol Oncol 8:581–595CrossRefGoogle Scholar
  17. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225CrossRefGoogle Scholar
  18. Li D, Lu Z, Jia J, Zheng Z, Lin S (2013) MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res 37:422–431CrossRefGoogle Scholar
  19. Li G, Bu J, Zhu Y, Xiao X, Liang Z, Zhang R (2015) Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol 8:15684–15695PubMedPubMedCentralGoogle Scholar
  20. Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics 10:246–253CrossRefGoogle Scholar
  21. Li YY, Cui JG, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ (2011) Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models. Neurosci Lett 487:94–98CrossRefGoogle Scholar
  22. Liu J, Gao J, Du Y, Li Z, Ren Y, Gu J, Wang X, Gong Y, Wang W, Kong X (2012) Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 131:683–691CrossRefGoogle Scholar
  23. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefGoogle Scholar
  24. Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, Wu X, Cheng L, Ma C, Xia J, Wang Z (2014) Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett 231:82–91CrossRefGoogle Scholar
  25. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658CrossRefGoogle Scholar
  26. Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, Ferns GA (2013) Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 27:374–379CrossRefGoogle Scholar
  27. Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M (2014) The attenuation of pain behavior and serum COX-2 concentration by Curcumin in a rat model of neuropathic pain. Korean J Pain 27:246–252CrossRefGoogle Scholar
  28. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016a) Role of microRNAs in the therapeutic effects of Curcumin in non-cancer diseases. Mol Diagn Ther 20:335–345CrossRefGoogle Scholar
  29. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A (2016b) Curcumin as a MicroRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol 171:1–38CrossRefGoogle Scholar
  30. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31:185–197CrossRefGoogle Scholar
  31. Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 6:e16081CrossRefGoogle Scholar
  32. Patil SP, Tran N, Geekiyanage H, Liu L, Chan C (2013) Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett 554:121–125CrossRefGoogle Scholar
  33. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474CrossRefGoogle Scholar
  34. Sawan C, Vaissiere T, Murr R, Herceg Z (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642:1–13CrossRefGoogle Scholar
  35. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887CrossRefGoogle Scholar
  36. Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, Khorramizadeh MR (2014) Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol 22:230–235CrossRefGoogle Scholar
  37. Sharma S, Kulkarni SK, Chopra K (2006) Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33:940–945CrossRefGoogle Scholar
  38. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6:167–177. Official publication of the Wound Healing Society [and] the European Tissue Repair SocietyCrossRefGoogle Scholar
  39. Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37:421–428CrossRefGoogle Scholar
  40. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7:e30590CrossRefGoogle Scholar
  41. Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 9:403–417PubMedPubMedCentralGoogle Scholar
  42. Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G, Alessandro R (2015) Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget 6:21918–21933CrossRefGoogle Scholar
  43. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, Shakibaei M, Boland CR, Goel A (2015) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36:355–367CrossRefGoogle Scholar
  44. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667CrossRefGoogle Scholar
  45. Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010) Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett 292:141–148CrossRefGoogle Scholar
  46. Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45CrossRefGoogle Scholar
  47. Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol (Northwood, London, England) 27:1114–1118CrossRefGoogle Scholar
  48. Yang N, Mahato RI (2011) GFAP promoter-driven RNA interference on TGF-beta1 to treat liver fibrosis. Pharm Res 28:752–761CrossRefGoogle Scholar
  49. Yao W, Dai W, Jiang L, Lay EY, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE (2016) Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 27:283–294. A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USACrossRefGoogle Scholar
  50. Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J (2015) Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 357:196–205CrossRefGoogle Scholar
  51. Yeh WL, Lin HY, Huang CY, Huang BR, Lin C, Lu DY, Wei KC (2015) Migration-prone glioma cells show curcumin resistance associated with enhanced expression of miR-21 and invasion/anti-apoptosis-related proteins. Oncotarget 6:37770–37781PubMedPubMedCentralGoogle Scholar
  52. Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR (2014) Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci 8:337CrossRefGoogle Scholar
  53. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24:1217–1223PubMedGoogle Scholar
  54. Zhang W, Bai W, Zhang W (2014) MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol 16:708–713. Official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of MexicoCrossRefGoogle Scholar
  55. Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, Lu Z, Gao S, Liao Y, Chen B, Yu F (2014) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation – a novel mechanism suppressing liver fibrosis. FEBS J 281:88–103CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sayantani Chowdhury
    • 1
  • Jyotirmoy Ghosh
    • 2
  • Parames C. Sil
    • 1
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia
  2. 2.Department of ChemistryBanwarilal Bhalotia CollegeUshagram AsansolIndia

Personalised recommendations