Diet and Epigenetic Alteration of Renal Function

  • Eva Nüsken
  • Kai-Dietrich Nüsken
  • Jörg DötschEmail author
Reference work entry


Adequate nutrition is fundamental to ensure undisturbed renal development. Macro- and micronutrient deficiency as well as energy overload or high-salt intake during gestation may significantly impair nephrogenesis and induce susceptibility toward disease. In addition, there is growing evidence that nutrition during early postnatal life is an important modulator of adult blood pressure and kidney function. The exact renal phenotype strongly depends on the type of dietary influence and the window of exposure. Thus, reduced glomerular count, microvascular rarefaction, and increased fibrosis are possible morphological findings. On the functional level, blood pressure levels, urinary protein excretion, and glomerular filtration rate are subject to dietary influences. Mechanistically, dysregulation of renin-angiotensin-aldosterone system (RAAS) components and other vasoactive substances, oxidative stress, altered mitochondrial energy metabolism, endoplasmic reticulum stress, and inflammatory processes are key factors. The present chapter gives an overview on current knowledge of dietary programming of renal disease. Defining the adequate amount of macro- and micronutrients which is needed for optimal kidney development remains a challenge for the future.


Blood pressure Glomerular count Glomerular filtration rate High-fat diet High-salt diet Low-protein diet Micronutrient deficiency Nephrogenesis Nephron number Proteinuria Renin-angiotensin-aldosterone system 

List of Abbreviations


Angiotensin-converting enzyme


Grape skin extract with antioxidant properties




Angiotensin II receptor type 1


Angiotensin II receptor type 2


5′ adenosine monophosphate-activated protein kinase


ER stress marker


CD2-associated protein


ER stress marker


Calorie restriction


Estimated glomerular filtration rate

ER stress

Endoplasmic reticulum stress


Glomerular filtration rate


High-fat diet


Intelligence quotient


Intrauterine growth restriction


Kidney injury molecule-1, biomarker for renal proximal tubule injury


Long-chain polyunsaturated fatty acids


Low protein


Mammalian target of rapamycin complex 1


Sodium chloride


Sodium-chloride symporter


Neutrophil gelatinase-associated lipocalin, biomarker for acute kidney injury


Sodium-potassium-chloride cotransporter


Protein restriction


Renin-angiotensin-aldosterone system


Small for gestational age


Substance which protects mitochondrial cristae


Transient receptor potential cation channel, subfamily C, member 6


United States


  1. Alcazar MA, Boehler E, Rother E, Amann K, Vohlen C, von Horsten S, Plank C, Dotsch J (2012) Early postnatal hyperalimentation impairs renal function via SOCS-3 mediated renal postreceptor leptin resistance. Endocrinology 153(3):1397–1410CrossRefPubMedGoogle Scholar
  2. Aliou Y, Liao MC, Zhao XP, Chang SY, Chenier I, Ingelfinger JR, Zhang SL (2016) Post-weaning high-fat diet accelerates kidney injury, but not hypertension programmed by maternal diabetes. Pediatr Res 79(3):416–424CrossRefPubMedGoogle Scholar
  3. Ao Y, Sun Z, Hu S, Zuo N, Li B, Yang S, Xia L, Wu Y, Wang L, He Z, Wang H (2015) Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 287(2):128–138CrossRefPubMedGoogle Scholar
  4. Armitage JA, Lakasing L, Taylor PD, Balachandran AA, Jensen RI, Dekou V, Ashton N, Nyengaard JR, Poston L (2005) Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J Physiol 565(Pt 1):171–184CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belizan JM, Villar J, Bergel E, del Pino A, Di Fulvio S, Galliano SV, Kattan C (1997) Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ 315(7103):281–285CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Smith GD (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension 52(4):638–644CrossRefPubMedGoogle Scholar
  7. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142(7):2841–53Google Scholar
  8. Black MJ, Lim K, Zimanyi MA, Sampson AK, Bubb KJ, Flower RL, Parkington HC, Tare M, Denton KM (2015) Accelerated age-related decline in renal and vascular function in female rats following early-life growth restriction. Am J Phys Regul Integr Comp Phys 309(9):R1153–R1161Google Scholar
  9. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100(4):520–526CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boubred F, Buffat C, Feuerstein JM, Daniel L, Tsimaratos M, Oliver C, Lelievre-Pegorier M, Simeoni U (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Ren Physiol 293(6):F1944–F1949CrossRefGoogle Scholar
  11. Boubred F, Daniel L, Buffat C, Feuerstein JM, Tsimaratos M, Oliver C, Dignat-George F, Lelievre-Pegorier M, Simeoni U (2009) Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats. Am J Physiol Ren Physiol 297(4):F943–F951CrossRefGoogle Scholar
  12. Bregere C, Rebrin I, Gallaher TK, Sohal RS (2010) Effects of age and calorie restriction on tryptophan nitration, protein content, and activity of succinyl-CoA:3-ketoacid CoA transferase in rat kidney mitochondria. Free Radic Biol Med 48(4):609–618CrossRefPubMedGoogle Scholar
  13. Calvo-Rubio M, Buron MI, Lopez-Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM, Gonzalez-Reyes JA (2016) Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 15(3):477–487CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germain N, Le NL, Pladys P, Gauthier C, Lahaie I, Abran D, Lavoie JC, Nuyt AM (2007) Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Phys Regul Integr Comp Phys 292(3):R1236–R1245Google Scholar
  15. Cardoso HD, Cabral EV, Vieira-Filho LD, Vieyra A, Paixao AD (2009) Fetal development and renal function in adult rats prenatally subjected to sodium overload. Pediatr Nephrol 24(10):1959–1965CrossRefPubMedGoogle Scholar
  16. Chadwick MA, Vercoe PE, Williams IH, Revell DK (2009) Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 97(3–4):437–445CrossRefPubMedGoogle Scholar
  17. Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics 23(2):159–171CrossRefPubMedGoogle Scholar
  18. Chen JY, Jian DY, Lien CC, Lin YT, Ting CH, Chen LK, Hsu TC, Huang HM, Wu YT, Kuan TT, Chao YW, Wu LY, Huang SW, Juan CC (2016) Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats. J Endocrinol 231:109–120CrossRefPubMedGoogle Scholar
  19. Chiplonkar SA, Agte VV, Tarwadi KV, Paknikar KM, Diwate UP (2004) Micronutrient deficiencies as predisposing factors for hypertension in lacto-vegetarian Indian adults. J Am Coll Nutr 23(3):239–247CrossRefPubMedGoogle Scholar
  20. Costa MR, Pires KM, Nalbones-Barbosa MN, Dos Santos Valenca S, Resende AC, de Moura RS (2016) Grape skin extract-derived polyphenols modify programming-induced renal endowment in prenatal protein-restricted male mouse offspring. Eur J Nutr 55(4):1455–1464CrossRefPubMedGoogle Scholar
  21. Cox LA, Nijland MJ, Gilbert JS, Schlabritz-Loutsevitch NE, Hubbard GB, McDonald TJ, Shade RE, Nathanielsz PW (2006) Effect of 30 percent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression. J Physiol 572(Pt 1):67–85CrossRefPubMedPubMedCentralGoogle Scholar
  22. DuBois BN, Pearson J, Mahmood T, Nguyen D, Thornburg K, Cherala G (2014) Perinatal growth restriction decreases diuretic action of furosemide in adult rats. Eur J Pharmacol 728:39–47CrossRefPubMedPubMedCentralGoogle Scholar
  23. El-Khashab EK, Hamdy AM, Maher KM, Fouad MA, Abbas GZ (2013) Effect of maternal vitamin A deficiency during pregnancy on neonatal kidney size. J Perinat Med 41(2):199–203CrossRefPubMedGoogle Scholar
  24. Fanni D, Gerosa C, Nemolato S, Mocci C, Pichiri G, Coni P, Congiu T, Piludu M, Piras M, Fraschini M, Zaffanello M, Iacovidou N, Van Eyken P, Monga G, Faa G, Fanos V (2012) “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true? J Matern Fetal Neonatal Med 25(Suppl 3):41–48CrossRefPubMedGoogle Scholar
  25. Forsyth JS, Willatts P, Agostoni C, Bissenden J, Casaer P, Boehm G (2003) Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ 326(7396):953CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gillman MW, Hood MY, Moore LL, Nguyen US, Singer MR, Andon MB (1995) Effect of calcium supplementation on blood pressure in children. J Pediatr 127(2):186–192CrossRefPubMedGoogle Scholar
  27. Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, Philip B, Mhaskar A, Benjamin A, Maharaj S, Laforte D, Raju C, Phadke K (2007) Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol 22(2):209–214CrossRefPubMedGoogle Scholar
  28. Gray SP, Kenna K, Bertram JF, Hoy WE, Yan EB, Bocking AD, Brien JF, Walker DW, Harding R, Moritz KM (2008) Repeated ethanol exposure during late gestation decreases nephron endowment in fetal sheep. Am J Phys Regul Integr Comp Phys 295(2):R568–R574Google Scholar
  29. Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21(11):1891–1902CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gray SP, Cullen-McEwen LA, Bertram JF, Moritz KM (2012) Mechanism of alcohol-induced impairment in renal development: could it be reduced by retinoic acid? Clin Exp Pharmacol Physiol 39(9):807–813CrossRefPubMedGoogle Scholar
  31. Gray C, Al-Dujaili EA, Sparrow AJ, Gardiner SM, Craigon J, Welham SJ, Gardner DS (2013) Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling. PLoS One 8(8):e72682CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guberman C, Jellyman JK, Han G, Ross MG, Desai M (2013) Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol 209(3):262 e261–262 e268CrossRefGoogle Scholar
  33. Guessous I, McClellan W, Kleinbaum D, Vaccarino V, Hugues H, Boulat O, Marques-Vidal P, Paccaud F, Theler JM, Gaspoz JM, Burnier M, Waeber G, Vollenweider P, Bochud M (2015) Serum 25-hydroxyvitamin D level and kidney function decline in a Swiss general adult population. Clin J Am Soc Nephrol 10(7):1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. Am J Kidney Dis 51(1):10–20CrossRefPubMedGoogle Scholar
  35. Hashem RM, Mohamed RH, Abo-El-matty DM (2016) Effect of curcumin on TNFR2 and TRAF2 in unilateral ureteral obstruction in rats. Nutrition 32(4):478–485CrossRefPubMedGoogle Scholar
  36. Hawkesworth S, Wagatsuma Y, Kahn AI, Hawlader MD, Fulford AJ, Arifeen SE, Persson LA, Moore SE (2013) Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J Nutr 143(5):728–734CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am J Med Sci 351(3):286–295CrossRefPubMedGoogle Scholar
  38. Huang C, Guo C, Nichols C, Chen S, Martorell R (2014) Elevated levels of protein in urine in adulthood after exposure to the Chinese famine of 1959–61 during gestation and the early postnatal period. Int J Epidemiol 43(6):1806–1814CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jackson AA, Dunn RL, Marchand MC, Langley-Evans SC (2002) Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin Sci (Lond) 103(6):633–639CrossRefGoogle Scholar
  40. Jackson CM, Alexander BT, Roach L, Haggerty D, Marbury DC, Hutchens ZM, Flynn ER, Maric-Bilkan C (2012) Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol Ren Physiol 302(6):F774–F783CrossRefGoogle Scholar
  41. Jones SE, Bilous RW, Flyvbjerg A, Marshall SM (2001) Intra-uterine environment influences glomerular number and the acute renal adaptation to experimental diabetes. Diabetologia 44(6):721–728CrossRefPubMedGoogle Scholar
  42. Keyzer CA, Lambers-Heerspink HJ, Joosten MM, Deetman PE, Gansevoort RT, Navis G, Kema IP, de Zeeuw D, Bakker SJ, de Borst MH, P. S. Group (2015) Plasma vitamin D level and change in albuminuria and eGFR according to sodium intake. Clin J Am Soc Nephrol 10(12):2119–2127CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koleganova N, Piecha G, Ritz E, Becker LE, Muller A, Weckbach M, Nyengaard JR, Schirmacher P, Gross-Weissmann ML (2011) Both high and low maternal salt intake in pregnancy alter kidney development in the offspring. Am J Physiol Ren Physiol 301(2):F344–F354CrossRefGoogle Scholar
  44. Konje JC, Bell SC, Morton JJ, de Chazal R, Taylor DJ (1996) Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci (Lond) 91(2):169–175CrossRefGoogle Scholar
  45. Kooijman MN, Bakker H, Franco OH, Hofman A, Taal HR, Jaddoe VW (2015) Fetal smoke exposure and kidney outcomes in school-aged children. Am J Kidney Dis 66(3):412–420CrossRefPubMedGoogle Scholar
  46. Langley-Evans SC, Jackson AA (1995) Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp Biochem Physiol A Physiol 110(3):223–8Google Scholar
  47. Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64(11):965–974CrossRefPubMedGoogle Scholar
  48. Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS (2012) A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109(34):13668–13673CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lei X, Chen Y, Ye J, Ouyang F, Jiang F, Zhang J (2015) The optimal postnatal growth trajectory for term small for gestational age babies: a prospective cohort study. J Pediatr 166(1):54–58CrossRefPubMedGoogle Scholar
  50. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54(5):1455–1462CrossRefPubMedGoogle Scholar
  51. Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W (2016) Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Ren Physiol 310(5):F351–F363CrossRefGoogle Scholar
  52. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90(1):33–39CrossRefPubMedGoogle Scholar
  53. Lloyd LJ, Foster T, Rhodes P, Rhind SM, Gardner DS (2012) Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J Physiol 590(2):377–393CrossRefPubMedGoogle Scholar
  54. Lozano G, Elmaghrabi A, Salley J, Siddique K, Gattineni J, Baum M (2015) Effect of prenatal programming and postnatal rearing on glomerular filtration rate in adult rats. Am J Physiol Ren Physiol 308(5):F411–F419CrossRefGoogle Scholar
  55. Magalhaes JC, da Silveira AB, Mota DL, Paixao AD (2006) Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload. Exp Physiol 91(3):611–619CrossRefPubMedGoogle Scholar
  56. Makrakis J, Zimanyi MA, Black MJ (2007) Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol 22(11):1861–1867CrossRefPubMedGoogle Scholar
  57. Mao C, Liu R, Bo L, Chen N, Li S, Xia S, Chen J, Li D, Zhang L, Xu Z (2013) High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. J Endocrinol 218(1):61–73CrossRefPubMedPubMedCentralGoogle Scholar
  58. Neiss WF, Klehn KL (1981) The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry 73(2):251–268CrossRefPubMedGoogle Scholar
  59. Nwagwu MO, Cook A, Langley-Evans SC (2000) Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr 83(1):79–85PubMedGoogle Scholar
  60. Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PM, Krediet RT, Osmond C, Barker DJ, Bleker OP (2005) Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol 16(1):189–194CrossRefPubMedGoogle Scholar
  61. Pereira SP, Oliveira PJ, Tavares LC, Moreno AJ, Cox LA, Nathanielsz PW, Nijland MJ (2015) Effects of moderate global maternal nutrient reduction on fetal baboon renal mitochondrial gene expression at 0.9 gestation. Am J Physiol Ren Physiol 308(11):F1217–F1228CrossRefGoogle Scholar
  62. Perng W, Gillman MW, Mantzoros CS, Oken E (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24(11):793–800. e791CrossRefPubMedPubMedCentralGoogle Scholar
  63. Plank C, Ostreicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, Dotsch J (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70(11):1974–1982CrossRefPubMedGoogle Scholar
  64. Quigley R (2012) Developmental changes in renal function. Curr Opin Pediatr 24(2):184–190CrossRefPubMedGoogle Scholar
  65. Robertson LT, Trevino-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, Hine C, Vargas D, Zheng H, Ozaki CK, Kristal BS, Simpson SJ, Mitchell JR (2015) Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J Nutr 145(8):1717–1727CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104(6):607–14Google Scholar
  67. Sanders MW, Fazzi GE, Janssen GM, Blanco CE, De Mey JG (2005) High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats. Hypertension 46(1):71–75CrossRefPubMedGoogle Scholar
  68. Sharkey D, Gardner DS, Symonds ME, Budge H (2009) Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring. Am J Physiol Ren Physiol 297(5):F1199–F1207CrossRefGoogle Scholar
  69. Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37(5):909–914CrossRefPubMedGoogle Scholar
  70. Siddique K, Guzman GL, Gattineni J, Baum M (2014) Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reprod Sci 21(12):1499–1507CrossRefPubMedPubMedCentralGoogle Scholar
  71. Slickers JE, Olshan AF, Siega-Riz AM, Honein MA, Aylsworth AS, S. National Birth Defects Prevention (2008) Maternal body mass index and lifestyle exposures and the risk of bilateral renal agenesis or hypoplasia: the National Birth Defects Prevention Study. Am J Epidemiol 168(11):1259–1267CrossRefPubMedGoogle Scholar
  72. Sonneveld R, Ferre S, Hoenderop JG, Dijkman HB, Berden JH, Bindels RJ, Wetzels JF, van der Vlag J, Nijenhuis T (2013) Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am J Pathol 182(4):1196–1204CrossRefPubMedGoogle Scholar
  73. Sonneveld R, Hoenderop JG, Stavenuiter AW, Ferrantelli E, Baltissen MP, Dijkman HB, Florquin S, Rops AL, Wetzels JF, Berden JH, van der Vlag J, Nijenhuis T (2016) 1,25-vitamin D3 deficiency induces albuminuria. Am J Pathol 186(4):794–804CrossRefPubMedGoogle Scholar
  74. Stewart CP, Christian P, Schulze KJ, Leclerq SC, West KP Jr, Khatry SK (2009) Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J Nutr 139(8):1575–1581CrossRefPubMedGoogle Scholar
  75. Sutherland MR, Gubhaju L, Yoder BA, Stahlman MT, Black MJ (2009) The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr Res 65(4):397–402CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22(7):1365–1374CrossRefPubMedPubMedCentralGoogle Scholar
  77. Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV (2016) Protection of mitochondria prevents high fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011CrossRefPubMedGoogle Scholar
  78. Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, van der Heijden AJ, Jaddoe VW (2011) Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr Nephrol 26(8):1275–1283CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tomat AL, Inserra F, Veiras L, Vallone MC, Balaszczuk AM, Costa MA, Arranz C (2008) Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am J Phys Regul Integr Comp Phys 295(2):R543–R549Google Scholar
  80. Vaidya A, Saville N, Shrestha BP, Costello AM, Manandhar DS, Osrin D (2008) Effects of antenatal multiple micronutrient supplementation on children’s weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371(9611):492–499CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19(1):151–157CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18(6):1688–1696CrossRefPubMedGoogle Scholar
  83. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49(4):460–467CrossRefPubMedGoogle Scholar
  84. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65(4):1339–1348CrossRefPubMedGoogle Scholar
  85. Yamada-Obara N, Yamagishi SI, Taguchi K, Kaida Y, Yokoro M, Nakayama Y, Ando R, Asanuma K, Matsui T, Ueda S, Okuda S, Fukami K (2016) Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring. Clin Exp Nephrol 20:853–861CrossRefPubMedGoogle Scholar
  86. Zeman FJ (1968) Effects of maternal protein restriction on the kidney of the newborn young of rats. J Nutr 94(2):111–116CrossRefPubMedGoogle Scholar
  87. Zidar N, Cavic MA, Kenda RB, Koselj M, Ferluga D (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79(1):28–32CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eva Nüsken
    • 1
  • Kai-Dietrich Nüsken
    • 1
  • Jörg Dötsch
    • 2
  1. 1.Department of Pediatrics, Pediatric NephrologyUniversity of CologneCologneGermany
  2. 2.Department of PediatricsUniversity of CologneCologneGermany

Personalised recommendations