Advertisement

Nutrition, DNA Methylation, and Developmental Origins of Cardiometabolic Disease: A Signal Systems Approach

  • Zachary M. Laubach
  • Christopher D. Faulk
  • Andres Cardenas
  • Wei PerngEmail author
Reference work entry

Abstract

The developmental origins of health and disease (DOHaD) hypothesis posits that environmental exposures during vulnerable developmental stages have a lasting impact on adult phenotype. Early life nutrition is recognized as a key determinant of long-term health, and epigenetic mechanisms have surfaced as a potential biological mechanism. This review first provides an overview of literature regarding epigenetically mediated DOHaD phenomena within the realm of cardiometabolic disease. Next, parallels are drawn between a signal system and epigenetic programming in DOHaD; specifically, with DNA methylation acting as a signal within an individual spanning from early to later life. Finally, epigenetically mediated DOHaD phenomena are explored using life course epidemiology and a signal system framework to identify potential sources of error, and make suggestions for appropriate study designs and analytical strategies.

Keywords

Signal System Epigenetics DNA Methylation Nutrition Drift DOHaD Metabolic Risk 

List of Abbreviations

BPA

Bisphenol A

CpG

Cytosine-phosphate-guanine

DAG

Directed acyclic graph

DNMT

DNA methyltransferase

DOHaD

Developmental origins of health and disease

EBLUP

Empirical Best Linear Unbiased Predictor

References

  1. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081CrossRefGoogle Scholar
  2. Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580CrossRefGoogle Scholar
  3. Barlow D, Bartolomei M (2007) Genomic imprinting in mammals. In: Allis D, Jenuwein T, Reinberg D, Caparros M-L (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  4. Cooper WN, Khulan B, Owens S et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790CrossRefGoogle Scholar
  5. Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998CrossRefGoogle Scholar
  6. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104: 13056–13061CrossRefGoogle Scholar
  7. Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746CrossRefGoogle Scholar
  8. El Hajj N, Pliushch G, Schneider E et al (2013) Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 62:1320–1328CrossRefGoogle Scholar
  9. Faulk C, Liu K, Barks A et al (2014) Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 9:934–941CrossRefGoogle Scholar
  10. Fraser A, Tilling K, Macdonald-Wallis C et al (2010) Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121:2557–2564CrossRefGoogle Scholar
  11. Getty T (2014) GEIs when information transfer is uncertain or incomplete. In: Hosken HA (ed) Genotype-by-environment interactions and sexual selection. Wiley Blackwell, ChichesterGoogle Scholar
  12. Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with Child’s later adiposity. Diabetes 60:1528CrossRefGoogle Scholar
  13. Haertle L, El Hajj N, Dittrich M et al (2017) Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin Epigenetics 9:28CrossRefGoogle Scholar
  14. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20CrossRefGoogle Scholar
  15. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049CrossRefGoogle Scholar
  16. Kochmanski J, Marchlewicz EH, Savidge M et al (2017a) Longitudinal effects of developmental bisphenol a and variable diet exposures on epigenetic drift in mice. Reprod Toxicol 68:154–163CrossRefGoogle Scholar
  17. Kochmanski J, Montrose L, Goodrich JM et al (2017b) Environmental deflection: the impact of toxicant exposures on the aging epigenome. Toxicol Sci 156:325–335PubMedPubMedCentralGoogle Scholar
  18. Kuh D, Ben-Shlomo Y, Lynch J et al (2003) Life course epidemiology. J Epidemiol Community Health 57:778–783CrossRefGoogle Scholar
  19. Lee HS, Barraza-Villarreal A, Hernandez-Vargas H et al (2013) Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr 98:480–487CrossRefGoogle Scholar
  20. Lillycrop K, Murray R, Cheong C et al (2017) ANRIL promoter DNA methylation: a perinatal marker for later adiposity. EBioMedicine 19:60–72CrossRefGoogle Scholar
  21. Liu X, Chen Q, Tsai H-J et al (2014) Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 55:223–230CrossRefGoogle Scholar
  22. Moore TR (2010) Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol 202:643–649CrossRefGoogle Scholar
  23. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352CrossRefGoogle Scholar
  24. Perng W, Gillman MW, Mantzoros CS et al (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24:793–800.e791CrossRefGoogle Scholar
  25. Pfeiffer S, Kruger J, Maierhofer A et al (2016) Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep 6:27969CrossRefGoogle Scholar
  26. Regnault N, Gillman MW, Rifas-Shiman SL et al (2013) Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care 36:3045–3053CrossRefGoogle Scholar
  27. Roseboom T, Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485CrossRefGoogle Scholar
  28. Shah S, McRae AF, Marioni RE et al (2014) Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 24:1725–1733CrossRefGoogle Scholar
  29. Shannon CEA (1948) Mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  30. Sharp GC, Lawlor DA, Richmond RC et al (2015) Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon longitudinal study of parents and children. Int J Epidemiol 44:1288–1304CrossRefGoogle Scholar
  31. Silverman BL, Metzger BE, Cho NH et al (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18:611CrossRefGoogle Scholar
  32. Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286CrossRefGoogle Scholar
  33. Soubry A, Murphy SK, Wang F et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 39:650–657CrossRefGoogle Scholar
  34. Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053CrossRefGoogle Scholar
  35. Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592CrossRefGoogle Scholar
  36. VanderWeele TJ, Tchetgen Tchetgen EJ (2017) Mediation analysis with time varying exposures and mediators. J R Stat Soc Ser B Stat Methodol 79:917–938CrossRefGoogle Scholar
  37. Wahl S, Drong A, Lehne B et al (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541:81–86CrossRefGoogle Scholar
  38. Waterland RA, Kellermayer R, Laritsky E et al (2010) Season of conception in rural Gambia affects DNA methylation at putative human metastable Epialleles. PLoS Genet 6:e1001252CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zachary M. Laubach
    • 1
  • Christopher D. Faulk
    • 2
  • Andres Cardenas
    • 3
  • Wei Perng
    • 4
    Email author
  1. 1.Department of Integrative Biology and Program in Ecology, Evolutionary Biology, and BehaviorMichigan State UniversityEast LansingUSA
  2. 2.Department of Animal SciencesUniversity of MinnesotaSt. PaulUSA
  3. 3.Department of Population MedicineHarvard Medical SchoolBostonUSA
  4. 4.Department of Nutritional Sciences, Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborUSA

Personalised recommendations