Cancer Cells and Effects of Glucose Starvation

  • Wensheng PanEmail author
  • Xiaoge Geng
  • Chenjing Zhang
Reference work entry


As the main energy source for the human body, glucose metabolism plays multiple roles in the physiology of cancer cells. In the environment of hypoxia and low sugar, cancer cells transform the normal glucose metabolism to aerobic glycolysis autonomously, regulated by different molecules. Under conditions of glucose deprivation, cancer cells suffer from the inhibition of growth, the arrest of cell cycle, apoptosis, and autophagy, regulated by respective associated proteins and pathways. It is possible that glucose deprivation alone or in combination with pharmacological therapy would be effective in the treatment of cancer “addicted” to glycolysis. However, several experiments have demonstrated that cancer cells may develop tolerance to glucose deprivation. In this review, we discuss these issues in order to provide a clear understanding of effects of glucose starvation on cancer therapy.


Cancer cells Warburg effect Oncogene Pathway Apoptosis Autophagy Tolerance to glucose deprivation 

List of Abbreviations


Adenosine monophosphate


Adenosine 5′-monophosphate (AMP)-activated protein kinase


Autophagy-related 14


Adenosine triphosphate


B-cell lymphoma-2


Guanosine triphosphate


Hypoxia-inducible factor 1 alpha subunit


KRAS proto-oncogene, GTPase


Autophagy marker light chain 3


MYC-associated factor X


Myeloid cell leukemia 1


Mechanistic target of rapamycin complexes 1 and 2


MYC proto-oncogene, bHLH transcription factor


Triphosphopyridine nucleotide


Progestin and adipoQ receptor family member 3


Phosphatidylinositol 3 kinase (PI3K)/protein kinase B(AKT)


Protein kinase A


Phosphatidylinositol 3-phosphate


Reactive oxygen species – protein tyrosine phosphatases – tyrosine kinases


Tumor necrosis factor-alpha


unc-51-like autophagy activating kinase 1


Unfolded protein response


  1. Andersen JL, Kornbluth S (2013) The tangled circuitry of metabolism and apoptosis. Mol Cell 49:399–410CrossRefGoogle Scholar
  2. Asati V, Mahapatra DK, Bharti SK (2017) K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem 125:299–314CrossRefGoogle Scholar
  3. Bhola PD, Letai A (2016) Mitochondria-judges and executioners of cell death sentences. Mol Cell 61:695–704CrossRefGoogle Scholar
  4. Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B et al (2015) AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940CrossRefGoogle Scholar
  5. Dang CV, Kim J-w, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56CrossRefGoogle Scholar
  6. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20CrossRefGoogle Scholar
  7. El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C (2011) Sugar-free approaches to cancer cell killing. Oncogene 30:253–264CrossRefGoogle Scholar
  8. Ferreira LMR, Hebrant A, Dumont JE (2012) Metabolic reprogramming of the tumor. Oncogene 31:3999–4011CrossRefGoogle Scholar
  9. Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7:17815–17828CrossRefGoogle Scholar
  10. Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G et al (2013) Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 4:e639CrossRefGoogle Scholar
  11. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I et al (2012) Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol 8:589CrossRefGoogle Scholar
  12. Ha J, Guan K-L, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Asp Med 46:46–62CrossRefGoogle Scholar
  13. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G (2015a) Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep 33:875–884CrossRefGoogle Scholar
  14. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z et al (2015b) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57:456–466CrossRefGoogle Scholar
  15. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316CrossRefGoogle Scholar
  16. Kress TR, Sabo A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607CrossRefGoogle Scholar
  17. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121CrossRefGoogle Scholar
  18. Levy P, Bartosch B (2016) Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 35:4155–4164CrossRefGoogle Scholar
  19. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392CrossRefGoogle Scholar
  20. MacFarlane M, Robinson GL, Cain K (2012) Glucose--a sweet way to die: metabolic switching modulates tumor cell death. Cell Cycle 11:3919–3925CrossRefGoogle Scholar
  21. McCarthy N (2015) Metabolism: MYC clocks on. Nat Rev Cancer 15:636–637CrossRefGoogle Scholar
  22. Monica B, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173CrossRefGoogle Scholar
  23. Palorini R, Cammarata FP, Balestrieri C, Monestiroli A, Vasso M, Gelfi C et al (2013) Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 4:e732CrossRefGoogle Scholar
  24. Palorini R, Votta G, Pirola Y, De Vitto H, De Palma S, Airoldi C et al (2016) Protein Kinase A activation promotes cancer cell resistance to glucose starvation and anoikis. PLoS Genet 12:e1005931CrossRefGoogle Scholar
  25. Parker AL, Turner N, McCarroll JA, Kavallaris M (2016) BetaIII-tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis 37:787–798CrossRefGoogle Scholar
  26. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47CrossRefGoogle Scholar
  27. Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505CrossRefGoogle Scholar
  28. Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521–533CrossRefGoogle Scholar
  29. Simons AL, Mattson DM, Dornfeld K, Spitz DR (2009) Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther 5(Suppl 1):S2–S6PubMedPubMedCentralGoogle Scholar
  30. Tanaka Y, Yano H, Ogasawara S, Yoshioka SI, Imamura H, Okamoto K et al (2015) Mild glucose starvation induces KDM2A-mediated H3K36me2 demethylation through AMPK to reduce rRNA transcription and cell proliferation. Mol Cell Biol 35:4170–4184CrossRefGoogle Scholar
  31. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033CrossRefGoogle Scholar
  32. Wang G, Dai L, Luo L, Xu W, Zhang C, Zhu Y et al (2014) Non-essential amino acids attenuate apoptosis of gastric cancer cells induced by glucose starvation. Oncol Rep 32:332–340CrossRefGoogle Scholar
  33. Wyld L, Tomlinson M, Reed MWR, Brown NJ (2002) Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation. Brit J Cancer 86:1343–1347CrossRefGoogle Scholar
  34. Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282:3892–3898CrossRefGoogle Scholar
  35. Xu D, Wang Z, Chen Y (2016) Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation. Autophagy 12:1047–1048CrossRefGoogle Scholar
  36. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Gastroenterology and Endoscopy Center, Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou/ZhejiangChina
  2. 2.Department of GastroenterologyThe Second Affiliated Hospital, School of Medicine, University of ZhejiangHangzhouChina

Personalised recommendations