Skip to main content

Factors Controlling Carbon and Hydrogen Isotope Fractionation During Biosynthesis of Lipids by Phototrophic Organisms

  • Living reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Abstract

The analysis of carbon and hydrogen stable isotope ratios of lipids from natural products is an integral component of research in Earth sciences. The isotopic composition of lipids from algae and higher plants can be linked with various environmental parameters, which makes lipid biomarkers a rich source of information about biological, chemical, and physical processes in the environment. This chapter reviews the key external and internal factors that affect C and H isotopic fractionation during biosynthesis of lipids. Significant advances need to be made to increase our level of understanding of the processes that control fractionation in different lipid groups and within individual lipid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ballentine DC, Macko SA, Turekian VC (1998) Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning. Chem Geol 152:151–161

    Article  CAS  Google Scholar 

  • Belt ST, Müller J (2013) The Arctic Sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Sci Rev 79:9–25

    Article  Google Scholar 

  • Belt ST, Smik L, Brown TA et al (2016) Source identification and distribution reveals the potential of the geochemical Antarctic Sea ice proxy IPSO25. Nat Commun 7:12655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bi X, Sheng G, Liu X, Li C, Fu J (2005) Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Org Geochem 36:1405–1417

    Article  CAS  Google Scholar 

  • Bidigare R, Fluegge A, Freeman KH et al (1997) Consistent fractionation of13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem C 11:279–292

    Article  CAS  Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7:127–145

    Article  Google Scholar 

  • Brassell SC, Eglinton G, Maxwell JR et al (1978) Natural background of alkanes in the aquatic environment. In: Hutzinger O, van Lelyveld LH, Zoeteman BCJ (eds) Aquatic pollutants, transformation and biological effects. Pergamon Press, Oxford, pp 69–86

    Chapter  Google Scholar 

  • Brassell SC, Eglinton G, Marlowe IT et al (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  CAS  Google Scholar 

  • Broadmeadow MSJ, Griffiths H (1993) Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotope and plant carbon-water relationships. Academic, San Diego, pp 109–129

    Chapter  Google Scholar 

  • Cernusak LA, Ubierna N, Winter K et al (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y (2006) Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish. Org Geochem 37:428–436

    Article  CAS  Google Scholar 

  • Chikaraishi Y (2014)13C/12C signatures in plants and algae. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 95–123

    Chapter  Google Scholar 

  • Chikaraishi J, Naraoka H (2003) Compound-specific δD–δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y, Naraoka H (2007) δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Org Geochem 38:198–215

    Article  CAS  Google Scholar 

  • Chikaraishi Y, Naraoka H, Poulson SR (2004a) Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica). Phytochemistry 65:323–330

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y, Naraoka H, Poulson SR (2004b) Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65:1369–1381

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y, Suzuki Y, Naraoka H (2004c) Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae. Phytochemistry 65:2293–2300

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y, Matsumoto K, Ogawa NO et al (2005) Hydrogen, carbon and nitrogen isotopic fractionations during chlorophyll biosynthesis in C3 higher plants. Phytochemistry 66:911–920

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi Y, Tanaka R, Tanaka A et al (2009) Fractionation of hydrogen isotopes during phytol biosynthesis. Org Geochem 40:569–573

    Article  CAS  Google Scholar 

  • Chivall D, M’Boule D, Sinke-Schoen D et al (2014) The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochim Cosmochim Acta 140:381–390

    Article  CAS  Google Scholar 

  • Collister JW, Rieley G, Stern B et al (1994) Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem 21:619–627

    Article  CAS  Google Scholar 

  • Conte MH, Weber JC, Carlson PJ, Flanagan LB (2003) Molecular and carbon isotopic composition of leaf wax in vegetation and aerosols in a northern prairie ecosystem. Oecologia 135:67–77

    Google Scholar 

  • Craig H (1954) Carbon-13 in plants and the relationships between carbon-13 and carbon-14 variations in nature. J Geol 62:115–149

    Article  CAS  Google Scholar 

  • Cranwell PA (1982) Lipids of aquatic sediments from Upton broad, a small productive lake. Prog Lipid Res 21:271–308

    Article  PubMed  CAS  Google Scholar 

  • Daniels WC, Russell JM, Giblin AE et al (2017) Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra. Geochim Cosmochim Acta 213:216–236

    Article  CAS  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry, vol 1. Elsevier, New York/Amsterdam, pp 239–406

    Google Scholar 

  • Diefendorf AF, Freimuth EJ (2017) Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org Geochem 103:1–21

    Article  CAS  Google Scholar 

  • Diefendorf AF, Mueller KE, Wing SL et al (2010) Global patterns in leaf13C discrimination and implications for studies of past and future climate. P Natl Acad Sci USA 107:5738–5743

    Article  Google Scholar 

  • Diefendorf AF, Freeman KH, Wing SL et al (2011) Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim Cosmochim Acta 75:7472–7485

    Article  CAS  Google Scholar 

  • Diefendorf AF, Freeman KH, Wing SL (2014) A comparison of terpenoid and leaf fossil vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. Org Geochem 71:30–42

    Google Scholar 

  • Diefendorf AF, Freeman KH, Wing SL, Currano ED, Mueller KE (2015a) Paleogene plants fractionated carbon isotopes similar to modern plants. Earth Planet Sc Lett 429:33–44

    Article  CAS  Google Scholar 

  • Diefendorf AF, Leslie AB, Wing SL (2015b) Leaf wax composition and carbon isotopes vary among major conifer groups. Geochim Cosmochim Acta 170:145–156

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  PubMed  CAS  Google Scholar 

  • Eglinton G, Gonzalez AG, Hamilton RJ et al (1962) Hydrocarbon constituents of the wax coatings of plant waxes: a taxonomic survey. Phytochemistry 1:89–102

    Article  CAS  Google Scholar 

  • Ehleringer JR, Lin ZF, Field CB, Sun GC, Kuo CY (1987) Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109–114

    Article  PubMed  CAS  Google Scholar 

  • Eley Y, Dawson L, Black S et al (2014) Understanding2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK. Geochim Cosmochim Acta 128:13–28

    Article  CAS  Google Scholar 

  • Eley Y, Dawson L, Pedentchouk N (2016) Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3 and C4 plants in Stiffkey saltmarsh, Norfolk, UK. Org Geochem 96:28–42

    Article  CAS  Google Scholar 

  • Englebrecht AC, Sachs JP (2005) Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones. Geochim Cosmochim Acta 69:4253–4265

    Article  CAS  Google Scholar 

  • Estep MF, Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim Cosmochim Acta 44:1197–1206

    Article  CAS  Google Scholar 

  • Evershed RP, Bull ID, Corr LT et al (2007) Compound-specific stable isotope analysis in ecology and paleoecology. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 480–540

    Chapter  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537

    Article  CAS  Google Scholar 

  • Feakins SJ, Sessions AL (2010) Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim Cosmochim Acta 74:2128–2141

    Article  CAS  Google Scholar 

  • Feakins SJ, Bentley LP, Salinas N et al (2016) Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim Cosmochim Acta 182:155–172

    Article  CAS  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  CAS  Google Scholar 

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 73–98

    Chapter  Google Scholar 

  • Freeman KH, Pancost RD (2014) Biomarkers for terrestrial plants and climate. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 79–94

    Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM et al (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256

    Article  PubMed  CAS  Google Scholar 

  • Freimuth EJ, Diefendorf AF, Lowell TV (2017) Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochim Cosmochim Acta 206:166–183

    Article  CAS  Google Scholar 

  • Gamarra B, Sachse D, Kahmen A (2016) Effects of leaf water evaporative2H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2H values in C3 and C4 grasses. Plant Cell Environ 39:2390–2403

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Edwards EJ, Zeng Y, Huang Y (2014) Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLoS One 9:e112610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grice K, Lu H, Zhou Y et al (2008) Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves. Phytochemistry 69:2807–2814

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM (1993) Factors controlling13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125

    Article  CAS  Google Scholar 

  • Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in Mineralogy & Geochemistry, vol 43. The Mineralogical Society of America, Washington, DC, pp 225–277

    Google Scholar 

  • Hayes JM, Freeman KH, Popp BN et al (1990) Compound-specific isotopic analysis: a novel tool for the reconstruction of ancient biogeochemical processes. In: Durand B, Behar F (eds) Advances in organic geochemistry. Pergamon, Oxford, pp 1115–1128

    Google Scholar 

  • Hobbie E, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385

    Article  CAS  Google Scholar 

  • Hou J, D’Andrea WJ, MacDonald D, Huang Y (2007) Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around blood pond, Massachusetts (USA). Org Geochem 38:977–984

    Article  CAS  Google Scholar 

  • Huang Y, Shuman B, Wang Y et al (2002) Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late quaternary climate variations. Geology 30:1103–1106

    Article  CAS  Google Scholar 

  • Kahmen A, Schefuß E, Sachse D (2013a) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants I: experimental evidence and mechanistic insights. Geochim Cosmochim Acta 111:39–49

    Article  CAS  Google Scholar 

  • Kahmen A, Hoffmann B, Schefuß E et al (2013b) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II: observational evidence and global implications. Geochim Cosmochim Acta 111:50–63

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1976) The chemistry and biochemistry of natural waxes. Elsevier, Amsterdam

    Google Scholar 

  • Ladd SN, Sachs JP (2012) Inverse relationship between salinity and n-alkane δD values in the mangrove Avicennia marina. Org Geochem 48:25–36

    Article  CAS  Google Scholar 

  • Ladd SN, Sachs JP (2013) Positive correlation between salinity and n-alkane δ13C values in the mangrove Avicennia marina. Org Geochem 64:1–8

    Article  CAS  Google Scholar 

  • Ladd SN, Sachs JP (2017)2H/1H fractionation in lipids of the mangrove Bruguiera gymnorhiza increases with salinity in marine lakes of Palau. Geochim Cosmochim Acta 204:300–312

    Article  CAS  Google Scholar 

  • Laws EA, Popp BN, Bidigare RR et al (2001) Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem Geophys Geosys 2. https://doi.org/10.1029/2000GC000057

  • Liu J, Liu W, An Z, Yang H (2016) Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale. Sci Rep-UK 6:19711

    Article  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (1994)13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99:201–215

    Article  PubMed  Google Scholar 

  • Lockheart MJ, Van Bergen PF, Evershed RP (1997) Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant-derived sedimentary organic matter. Org Geochem 26:137–153

    Article  Google Scholar 

  • Luo Y-H, Steinberg L, Suda S, Kumazawa S, Mitsui A (1991) Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria. Plant Cell Physiol 32:897–900

    CAS  Google Scholar 

  • M’boule D, Chivall D, Sinke-Schoen D et al (2014) Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae. Geochim Cosmochim Acta 130:126–135

    Article  CAS  Google Scholar 

  • Maloney AE, Shinneman ALC, Hemeon K et al (2016) Exploring lipid2H/1H fractionation mechanisms in response to salinity with continuous cultures of the diatom Thalassiosira pseudonana. Org Geochem 101:154–165

    Article  CAS  Google Scholar 

  • Marlowe IT, Brassell SC, Eglinton G et al (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141

    Article  CAS  Google Scholar 

  • McInerney FA, Wing SL (2011) The Paleocene-Eocene Thermal Maximum: A Perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Pl Sc 39:489–516

    Google Scholar 

  • McInerney FA, Helliker BR, Freeman KH (2011) Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration. Geochim Cosmochim Acta 75:541–554

    Article  CAS  Google Scholar 

  • Mead R, Xu Y, Chong J, Jaffè R (2005) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem 36:363–370

    Article  CAS  Google Scholar 

  • Moldowan JM, Dahl J, Huizinga BJ et al (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771

    Article  PubMed  CAS  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sc Lett 22:169–176

    Article  CAS  Google Scholar 

  • Newberry SL, Kahmen A, Dennis P et al (2015) n-alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis. Geochim Cosmochim Acta 165:75–85

    Article  CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • Pagani M (2014) Biomarker-based inferences of past climate: the alkenone pCO2 proxy. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 361–378

    Chapter  Google Scholar 

  • Pagani M, Pedentchouk N, Huber M et al (2006) Arctic’s hydrology during global warming at the Palaeocene-Eocene thermal maximum. Nature 442:671–675

    Article  PubMed  CAS  Google Scholar 

  • Pahnke K, Sachs JP, Keigwin LD, Timmermann A, Xie S-P (2007) Eastern tropical Pacific hydrological changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography 22. https://doi.org/10.1029/2007PA001468

  • Pancost R, Pagani M (2006) Controls on the carbon isotopic composition of lipids in marine environments. In: Volkman J (ed) Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin/Heidelberg, pp 209–249

    Chapter  Google Scholar 

  • Pancost RD, Freeman KH, Wakeham SG (1999) Controls on the carbon-isotope compositions of compounds in Peru surface waters. Org Geochem 30:319–340

    Article  CAS  Google Scholar 

  • Pataki DE, Ehleringer JR, Flanagan LB, Yakir D (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17. https://doi.org/10.1029/2001GB001850

  • Pedentchouk N, Turich C (2017) Carbon and hydrogen isotopic compositions of n-alkanes as a tool in petroleum exploration. In: Lawson M, Formolo MJ, Eiler JM (eds) From source to seep: geochemical applications in hydrocarbon systems, Geological society, special publications, vol 468. Geological Society, London. https://doi.org/10.1144/SP468.1

    Chapter  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005a) The biomarker guide, volume 1, biomarkers and isotopes in environment and human history, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005b) The biomarker guide: volume 2, biomarkers and isotopes in petroleum exploration and earth history, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rach O, Brauer A, Wilkes H, Sachse D (2014) Delayed hydrological response to Greenland cooling at the onset of the younger Dryas in western Europe. Nat Geosci 7:109–112

    Article  CAS  Google Scholar 

  • Rau G, Takahashi T, Des Marais D, Repeta D, Martin J (1992) The relationship between d13C of organic matter and [CO2aq] in ocean surface water: data from a JGOFS site in the northeastern Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Robinson N, Eglinton G, Brassell SC, Cranwell PA (1984) Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–442

    Article  CAS  Google Scholar 

  • Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota – a review. Mar Environ Res 30:191–216

    Article  CAS  Google Scholar 

  • Sachs JP (2014) Hydrogen isotope signatures in the lipids of phytoplankton. In: Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 79–94

    Chapter  Google Scholar 

  • Sachs JP, Schwab VF (2011) Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary. Geochim Cosmochim Acta 75:444–459

    Article  CAS  Google Scholar 

  • Sachs JP, Maloney AE, Gregersen J et al (2016) Effect of salinity on2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi. Geochim Cosmochim Acta 189:96–109

    Article  CAS  Google Scholar 

  • Sachs JP, Maloney AE, Gregersen J (2017) Effect of light on2H/1H fractionation in lipids from continuous cultures of the diatom Thalassiosira pseudonana. Geochim Cosmochim Acta 209:204–215

    Article  CAS  Google Scholar 

  • Sachse D, Sachs JP (2008) Inverse relationship between D/H fractionation in cyanobacterial lipids and salinity in Christmas Island saline ponds. Geochim Cosmochim Acta 72:793–806

    Article  CAS  Google Scholar 

  • Sachse D, Radke J, Gleixner G (2004) Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta 68:4877–4889

    Article  CAS  Google Scholar 

  • Sachse D, Radke J, Gleixner G (2006) δD values of individual n-alkanes from terrestrial plants along a climatic gradient – implications for the sedimentary biomarker record. Org Geochem 37:469–483

    Article  CAS  Google Scholar 

  • Sachse D, Kahmen A, Gleixner G (2009) Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvatica and Acer pseudoplatanus). Org Geochem 40:732–742

    Article  CAS  Google Scholar 

  • Sachse D, Gleixner G, Wilkes H et al (2010) Leaf wax n-alkane δD values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochim Cosmochim Acta 74:6741–6750

    Article  CAS  Google Scholar 

  • Sachse D, Billault I, Bowen GJ et al (2012) Molecular palaeohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Pl Sc 40:221–249

    Article  CAS  Google Scholar 

  • Sachse D, Dawson TE, Kahmen A (2015) Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isot Environ Healt S 51:124–142

    Article  CAS  Google Scholar 

  • Sakata S, Hayes JM, McTaggart AR, Evans RA et al (1997) Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. Geochim Cosmochim Acta 61:5379–5389

    Article  PubMed  CAS  Google Scholar 

  • Sauer PE, Eglinton TI, Hayes JM et al (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim Cosmochim Acta 65:213–222

    Article  CAS  Google Scholar 

  • Schmidt H-L, Werner RA, Eisenreich W (2003) Systematics of2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61–85

    Article  CAS  Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64:67–87

    CAS  Google Scholar 

  • Schouten S, Klein Breteler WCM, Blokker P et al (1998) Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim Cosmochim Acta 62:1397–1406

    Article  CAS  Google Scholar 

  • Schouten S, Ossebaar J, Schreiber K et al (2006) The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3:113–119

    Article  CAS  Google Scholar 

  • Schouten S, Woltering M, Rijpstra WIC et al (2007) The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic. Earth Planet Lett 258:581–592

    Article  CAS  Google Scholar 

  • Schubert BA, Jahren AH (2012) The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta 96:29–43

    Article  CAS  Google Scholar 

  • Schwab VF, Sachs JP (2009) The measurement of D/H ratio in alkenones and their isotopic heterogeneity. Org Geochem 40:111–118

    Article  CAS  Google Scholar 

  • Schwab VRF, Sachs JP (2011) Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary. Geochim Cosmochim Acta 75:7552–7565

    Article  CAS  Google Scholar 

  • Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70:2153–2162

    Article  CAS  Google Scholar 

  • Sessions A (2016) Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem 96:43–64

    Article  CAS  Google Scholar 

  • Sessions AL, Burgoyne TW, Schimmelmann A (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org Geochem 30:1193–1200

    Article  CAS  Google Scholar 

  • Shanahan TM, Hughen KA, Ampel L et al (2013) Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic. Geochim Cosmochim Acta 119:286–301

    Article  CAS  Google Scholar 

  • Smith BN, Epstein S (1970) Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiol 46:738–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tcherkez G, Mahé A, Hodges M (2011)12C/13C fractionations in plant primary metabolism. Trends Plant Sci 16:499–506

    PubMed  CAS  Google Scholar 

  • Tipple BJ, Pagani M (2007) The early origins of terrestrial C4 photosynthesis. Annu Rev Earth Pl Sc 35:435–461

    Article  CAS  Google Scholar 

  • Tipple BJ, Pagani M (2010) A 35 Myr north American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics. Earth Planet Sc Lett 299:250–262

    Article  CAS  Google Scholar 

  • Tipple BJ, Pagani M (2013) Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochim Cosmochim Acta 111:64–77

    Article  CAS  Google Scholar 

  • Tipple BJ, Meyers SR, Pagani M (2010) Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25:PA3202

    Article  Google Scholar 

  • Tipple BJ, Berke MA, Doman CE et al (2013) Leaf-wax n-alkanes record the plant-water environment at leaf flush. P Natl Acad Sci USA 110:2659–2664

    Article  Google Scholar 

  • Tipple BJ, Berke MA, Hambach B et al (2015) Predicting leaf wax n-alkane2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model. Plant Cell Environ 38:1035–1047

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Benthien A, French KL et al (2015) Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi. Geochim Cosmochim Acta 160:16–24

    Article  CAS  Google Scholar 

  • van Dongen BE, Schouten S, Sinninghe Damsté JS (2002) Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants. Mar Ecol Prog Ser 232:83–92

    Article  Google Scholar 

  • Versteegh GJM, Schefuß E, Dupont L et al (2004) Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochim Cosmochim Acta 68:411–422

    Article  CAS  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS et al (1980) Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–414

    Article  CAS  Google Scholar 

  • White JWC (1988) Stable hydrogen isotope ratios in plants: a review of current theory and some potential applications. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 142–162

    Google Scholar 

  • Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim Cosmochim Acta 2:243–254

    Article  CAS  Google Scholar 

  • Wolhowe MD, Prahl FG, Probert I et al (2009) Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes. Biogeosciences 6:1681–1694

    Article  CAS  Google Scholar 

  • Zhang Z, Sachs JP (2007) Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org Geochem 38:582–608

    Article  CAS  Google Scholar 

  • Zhang Z, Sachs JP, Marchetti A (2009) Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects. Org Geochem 40:428–439

    Article  CAS  Google Scholar 

  • Zhou Y, Grice K, Stuart-Williams H et al (2010) Biosynthetic origin of the saw-toothed profile in δ13C and δ2Η of n-alkanes and systematic isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants. Phytochemistry 71:388–403

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Stuart-Williams H, Grice K et al (2015) Allocate carbon for a reason: priorities are reflected in the13C/12C ratios of plant lipids synthesized via three independent biosynthetic pathways. Phytochemistry 111:14–20

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Grice K, Stuart-Williams H et al (2016) Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of compartmentation in C4 photosynthetic chemistry and C3 photorespiration. Plant Cell Environ 39:2676–2690

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H (1988) Hydrogen isotope fractionation in plant tissues. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 105–123

    Google Scholar 

  • Zimmerman JK, Ehleringer JR (1990) Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. Oecologia 83:247–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Pedentchouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pedentchouk, N., Zhou, Y. (2018). Factors Controlling Carbon and Hydrogen Isotope Fractionation During Biosynthesis of Lipids by Phototrophic Organisms. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics