History of Life from the Hydrocarbon Fossil Record
Abstract
Certain lipids and biopolymers retain their original carbon backbone structure through sedimentary diagenesis and catagenesis and can be assigned to a specific biological origin. These “taxon-specific biomarkers” (TSBs) can serve as chemical fossils that trace the evolution of life. TSBs in Precambrian rocks reveal the early evolution of archaea, cyanobacteria, and eukarya and the development of atmospheric free oxygen. However, improved criteria for assessing syngeneticity have questioned their proposed earliest occurrence in Archean rocks. Steroidal TSBs document the changing assemblages of marine phytoplankton from Neoproterozoic organic-walled acritarchs to present-day predominance of diatoms. Terpanoid TSBs reveal the evolution of higher land plants. TSBs used in conjunction with isotopic analysis can identify the taxa of enigmatic fossils, provide important clues to the causes of mass extinctions, and describe the global changes in biotic diversity and Earth’s conditions as the biosphere recovers from them. Biomarkers record the evolutionary history of life on Earth and, perhaps, other planets.
References
- Alleon J, Bernard S, Le Guillou C, Daval D, Skouri-Panet F, Pont S, Delbes L, Robert F (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem Geol 437:98–108CrossRefGoogle Scholar
- Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean Era of Australia. Nature 441:714–718PubMedCrossRefPubMedCentralGoogle Scholar
- Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198–227CrossRefGoogle Scholar
- Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154:611–617PubMedCrossRefPubMedCentralGoogle Scholar
- Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the Great Oxidation Event? Science 317:1903–1906PubMedCrossRefPubMedCentralGoogle Scholar
- Antcliffe JB (2013) Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56:917–925Google Scholar
- Armstroff A, Wilkes H, Schwarzbauer J, Littke R, Horsfield B (2006) Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. Palaeogeogr Palaeoclimatol Palaeoecol 240:253–274CrossRefGoogle Scholar
- Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–285PubMedCrossRefPubMedCentralGoogle Scholar
- Auras S, Wilde V, Hoernes S, Scheffler K, Püttmann W (2006) Biomarker composition of higher plant macrofossils from Late Palaeozoic sediments. Palaeogeogr Palaeoclimatol Palaeoecol 240:305–317CrossRefGoogle Scholar
- Barbanti SM, Moldowan JM, Mello MR, Kolaczkowski E, Watt DS, Huizinga BJ (1999) Analysis and occurrence of novel triaromatic 23,24 dimethylcholestanes in geologic time. In: Proceedings of the 19th international meeting on organic geochemistry, Istanbul, 6–10 Sept 1999, pp 159–160Google Scholar
- Barbanti SM, Moldowan JM, Watt DS, Kolaczkowska E (2011) New triartomatic steroids distinguish Paleozoic from Mesozoic oil. Org Geochem 42:409–424CrossRefGoogle Scholar
- Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292CrossRefGoogle Scholar
- Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112:14518–14521PubMedCrossRefPubMedCentralGoogle Scholar
- Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25CrossRefGoogle Scholar
- Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27CrossRefGoogle Scholar
- Benton MJ (2008) When life nearly died: the greatest mass extinction of all time, 2nd edn. Thames & Hudson, LondonGoogle Scholar
- Bergstrom CT, Dugatkin LA (2012) Evolution. Norton, New York. 786 ppGoogle Scholar
- Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie H (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352PubMedPubMedCentralCrossRefGoogle Scholar
- Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, Princeton. 392 ppCrossRefGoogle Scholar
- Blokker P, van Bergen P, Pancost R, Collinson ME, de Leeuw JW, Sinninghe Damsté JS (2001) The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin. Geochim Cosmochim Acta 65:885–900CrossRefGoogle Scholar
- Boere AC, Rijpstra WIC, De Lange GJ, Sinninghe Damsté JS, Coolen MJL (2011) Preservation potential of ancient plankton DNA in Pleistocene marine sediments. Geobiology 9:377–393PubMedCrossRefPubMedCentralGoogle Scholar
- Brain CK, Prave AR, Hoffmann K-H, Fallick AE, Botha A, Herd DA, Sturrock C, Young I, Condon DJ, Allison SG (2012) The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci 108. https://doi.org/10.4102/sajs.v108i1/2.658
- Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81PubMedCrossRefPubMedCentralGoogle Scholar
- Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B: Biol Sci 361:887–902CrossRefGoogle Scholar
- Brasier MD, Antcliffe J, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proc Natl Acad Sci 112:4859–4864PubMedCrossRefPubMedCentralGoogle Scholar
- Brassell SC (2014) Climatic influences on the Paleogene evolution of alkenones. Paleoceanography 29:255–272CrossRefGoogle Scholar
- Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
- Brassell SC, Dumitrescu M, the ODP Leg 198 Shipboard Scientific Party (2004) Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Org Geochem 35:181–188CrossRefGoogle Scholar
- Brennecka GA, Herrmann AC, Algeo TJ, Anbar AD (2011) Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Natl Acad Sci U S A 108:17631–17634PubMedPubMedCentralCrossRefGoogle Scholar
- Brocks JJ (2011) Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim Cosmochim Acta 75:3196–3213CrossRefGoogle Scholar
- Brocks JJ, Butterfield NJ (2009) Biogeochemistry: early animals out in the cold. Nature 457:672–673PubMedCrossRefPubMedCentralGoogle Scholar
- Brocks JJ, Schaeffer P (2008) Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim Cosmochim Acta 72:1396–1414CrossRefGoogle Scholar
- Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
- Brocks JJ, Buick R, Logan GA, Summons RE (2003a) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319CrossRefGoogle Scholar
- Brocks JJ, Buick R, Summons RE, Logan GA (2003b) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
- Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden S (2005) Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean. Nature 437:866–870PubMedCrossRefPubMedCentralGoogle Scholar
- Brocks JJ, Jarrett AJM, Sirantoine E, Kenig F, Moczydłowska M, Porter S, Hope J (2016) Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14:129–149PubMedCrossRefPubMedCentralGoogle Scholar
- Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548:578–581PubMedCrossRefPubMedCentralGoogle Scholar
- Brown TA, Barnes IM (2015) The current and future applications of ancient DNA in Quaternary science. J Quat Sci 30:144–153CrossRefGoogle Scholar
- Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197PubMedCrossRefPubMedCentralGoogle Scholar
- Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
- Butterfield NJ, Rainbird RH (1998) Diverse organic-walled fossils, including “possible dinoflagellates”, from the early Neoproterozoic of Arctic Canada. Geology 26:963–966CrossRefGoogle Scholar
- Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
- Cao C, Zheng Q (2009) Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section. Sci China D 52:1529–1536CrossRefGoogle Scholar
- Cao C, Love GD, Hays LE, Wang W, Shen S, Summons RE (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett 281:188–201CrossRefGoogle Scholar
- Cappellini E, Collins MJ, Gilbert MTP (2014) Unlocking ancient protein palimpsests. Science 343:1320–1322PubMedCrossRefPubMedCentralGoogle Scholar
- Cleland TP, Schroeter ER, Zamdborg L, Zheng W, Lee JE, Tran JC, Bern M, Duncan MB, Lebleu VS, Ahlf DR, Thomas PM, Kalluri R, Kelleher NL, Schweitzer MH (2015) Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J Proteome Res 14:5252–5262PubMedPubMedCentralCrossRefGoogle Scholar
- Collins MJ, Gernaey AM, Nielsen-Marsh CM, Vermeer C, Westbroek P (2000) Slow rates of degradation of osteocalcin: green light for fossil bone protein? Geology 28:1139–1142CrossRefGoogle Scholar
- Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR, Nägler TF, Beukes NJ, Wille M (2012) Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim Cosmochim Acta 86:118–137CrossRefGoogle Scholar
- Derenne S, Metzger P, Largeau C (1992) Similar morphological and chemical variations of Gloeocapsomorpha prisca in Ordovician sediments and cultured Botryococcus braunii as a response to changes in salinity. Org Geochem 19:299–313CrossRefGoogle Scholar
- Droser ML, Gehling JG (2015) The advent of animals: the view from the Ediacaran. Proc Natl Acad Sci 112:4865–4870PubMedCrossRefPubMedCentralGoogle Scholar
- Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta 74:6655–6668CrossRefGoogle Scholar
- Dutkiewicz A, Volk H, Ridley J, George SC (2004) Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocarbons in crystalline rocks. Org Geochem 35:937–957CrossRefGoogle Scholar
- Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geol 34:437–440CrossRefGoogle Scholar
- Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci 103:15759–15764PubMedCrossRefPubMedCentralGoogle Scholar
- Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
- Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localisation of neutral long-chain lipids in the haptophyte algae, Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009CrossRefGoogle Scholar
- Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6. https://doi.org/10.1101/cshperspect.a016139
- Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton. 306 ppGoogle Scholar
- Falcón LI, Magallón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783PubMedCrossRefPubMedCentralGoogle Scholar
- Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709PubMedCrossRefPubMedCentralGoogle Scholar
- Fenton S, Grice K, Twitchett RJ, Bottcher ME, Looy CV, Nabbefeld B (2007) Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian-Triassic (P/Tr) Schuchert Dal section (East Greenland). Earth Planet Sci Lett 262:230–239CrossRefGoogle Scholar
- Fowler MG (1992) The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late Ordovician age from Canada. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution. Springer, Berlin, pp 336–348CrossRefGoogle Scholar
- Fowler MG, Stasiuk LD, Hearn M, Obermajer M (2004) Evidence for Gloeocapsomorpha prisca in Late Devonian source rocks from Southern Alberta, Canada. Org Geochem 35:425–441CrossRefGoogle Scholar
- French KL, Sepúlveda J, Trabucho-Alexandre J, Gröcke DR, Summons RE (2014) Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. Earth Planet Sci Lett 390:116–127CrossRefGoogle Scholar
- French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci 112:5915–5920PubMedCrossRefPubMedCentralGoogle Scholar
- Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefPubMedCentralGoogle Scholar
- Gensel PG, Edwards D (2001) Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York. 324 ppCrossRefGoogle Scholar
- George SC, Volk H, Dutkiewicz A, Ridley J, Buick R (2008) Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochim Cosmochim Acta 72:844–870CrossRefGoogle Scholar
- Georgiou CD, Deamer DW (2014) Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14:541–549PubMedCrossRefPubMedCentralGoogle Scholar
- Gold DA, Grabenstatter J, de Mendoza A, Riesgo A, Ruiz-Trillo I, Summons RE (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. Proc Natl Acad Sci 113:2684–2689PubMedCrossRefPubMedCentralGoogle Scholar
- Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686PubMedCrossRefPubMedCentralGoogle Scholar
- Greenwood PF, Summons RE (2003) GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Org Geochem 34:1211–1222CrossRefGoogle Scholar
- Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005a) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–709PubMedCrossRefPubMedCentralGoogle Scholar
- Grice K, Twitchett RJ, Alexander R, Foster CB, Looy C (2005b) A potential biomarker for the Permian-Triassic ecological crisis. Earth Planet Sci Lett 236:315–321CrossRefGoogle Scholar
- Grice K, Nabbefeld B, Maslen E (2007) Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary. Org Geochem 38:1795–1803CrossRefGoogle Scholar
- Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849PubMedCrossRefPubMedCentralGoogle Scholar
- Hickman-Lewis K, Garwood RJ, Brasier MD, Goral T, Jiang H, McLoughlin N, Wacey D (2016) Carbonaceous microstructures from sedimentary laminated chert within the 3.46 Ga Apex Basalt, Chinaman Creek locality, Pilbara, Western Australia. Precambrian Res 278:161–178CrossRefGoogle Scholar
- Hoffman CF, Foster CB, Powell TG, Summons RE (1987) Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim Cosmochim Acta 51:2681–2697CrossRefGoogle Scholar
- Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073Google Scholar
- Holba AG, Dzou LIP, Masterson WD, Singletary MS, Moldowan JM, Mello MR, Tegelaar E (1998a) Application of 24-norcholestanes for constraining source age of petroleum. Org Geochem 29:1269–1283CrossRefGoogle Scholar
- Holba AG, Tegelaar EW, Huizinga BJ, Moldowan JM, Singletary MS, McCaffrey MA, Dzou LIP (1998b) 24-norcholestanes as age-sensitive molecular fossils. Geology 26:783–786CrossRefGoogle Scholar
- Holland HD (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
- Holland H (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B: Biol Sci 361:903–915CrossRefGoogle Scholar
- Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedCrossRefPubMedCentralGoogle Scholar
- Hurley SJ, Elling FJ, Könneke M, Buchwald C, Wankel SD, Santoro AE, Lipp JS, Hinrichs K-U, Pearson A (2016) Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc Natl Acad Sci 113:7762–7767PubMedCrossRefPubMedCentralGoogle Scholar
- Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94PubMedCrossRefPubMedCentralGoogle Scholar
- Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132CrossRefGoogle Scholar
- Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938PubMedCrossRefPubMedCentralGoogle Scholar
- Jenkyns HC, Schouten-Huibers L, Schouten S, Sinninghe Damsté JS (2012) Warm middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim Past 8:215–226CrossRefGoogle Scholar
- Jia C, Huang J, Kershaw S, Luo G, Farabegoli E, Perri MC, Chen L, Bai X, Xie S (2012) Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction. Geobiology 10:60–71PubMedCrossRefGoogle Scholar
- Jossang J, Bel-Kassaoui H, Jossang A, Seuleiman M, Nel A (2008) Quesnoin, a novel pentacyclic ent-diterpene from 55 Million years old Oise amber. J Org Chem 73:412–417PubMedCrossRefPubMedCentralGoogle Scholar
- Kim J-H, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans EC, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654CrossRefGoogle Scholar
- Kim J-H, Schouten S, Rodrigo-Gámiz M, Rampen S, Marino G, Huguet C, Helmke P, Buscail R, Hopmans EC, Pross J, Sangiorgi F, Middelburg JBM, Sinninghe Damsté JS (2015) Influence of deep-water derived isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea. Geochim Cosmochim Acta 150:125–141Google Scholar
- Kirkpatrick JB, Walsh EA, D’Hondt S (2016) Fossil DNA persistence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44:615–618CrossRefGoogle Scholar
- Kirschvink JL, Kopp RE (2008) Paleoproterozic icehouses and the evolution of oxygen mediating enzymes: the case for a late origin of photosystem-II. Philos Trans R Soc B 363:2755–2765CrossRefGoogle Scholar
- Knoll AH (2015) Paleobiological perspectives on early microbial evolution. Cold Spring Harb Perspect Biol 7:a018093PubMedPubMedCentralCrossRefGoogle Scholar
- Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B: Biol Sci 361:1023–1038CrossRefGoogle Scholar
- Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007a) The geological succession of primary producers in the oceans. In: Falkowski P, Knoll AH (eds) The evolution of primary producers in the sea. Academic, Boston, pp 133–164CrossRefGoogle Scholar
- Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007b) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313CrossRefGoogle Scholar
- Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136PubMedCrossRefPubMedCentralGoogle Scholar
- Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
- Lalonde SV, Konhauser KO (2015) Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci 112:995–1000PubMedCrossRefPubMedCentralGoogle Scholar
- Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S (2014) Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin). Geobiology 12:212–220PubMedCrossRefPubMedCentralGoogle Scholar
- Liao J, Lu H, Sheng G, Peng P, Hsu CS (2015) Monoaromatic, diaromatic, triaromatic, and tetraaromatic hopanes in Kukersite shale and their stable carbon isotopic composition. Energy Fuel 29:3573–3583CrossRefGoogle Scholar
- Lindgren J, Uvdal P, Engdahl A, Lee AH, Alwmark C, Bergquist K-E, Nilsson E, Ekström P, Rasmussen M, Douglas DA, Polcyn MJ, Jacobs LL (2011) Microspectroscopic evidence of Cretaceous bone proteins. PLoS One 6:e19445PubMedPubMedCentralCrossRefGoogle Scholar
- Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian Period. Nature 457:718–721PubMedCrossRefPubMedCentralGoogle Scholar
- Manning PL, Morris PM, McMahon A, Jones E, Gize A, Macquaker JHS, Wolff G, Thompson A, Marshall J, Taylor KG, Lyson T, Gaskell S, Reamtong O, Sellers WI, van Dongen BE, Buckley M, Wogelius RA (2009) Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc B 276:3429–3437PubMedCrossRefPubMedCentralGoogle Scholar
- Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci 105:18090–18095PubMedCrossRefPubMedCentralGoogle Scholar
- Martin WF, Sousa FL (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127PubMedCentralCrossRefGoogle Scholar
- Massé G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci 101:4413–4418PubMedCrossRefPubMedCentralGoogle Scholar
- McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim Cosmochim Acta 58:529–532CrossRefGoogle Scholar
- McKeegan KD, Kudryavtsev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, West Greenland. Geology 35:591–594CrossRefGoogle Scholar
- McKirdy DM, Imbus SW (1992) Precambrian petroleum: a decade of changing perceptions. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 176–192CrossRefGoogle Scholar
- Medlin LK, Sáez AG, Young JR (2008) A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar Micropaleontol 67:69–86CrossRefGoogle Scholar
- Meng F, Zhou C, Yin L, Chen Z, Yuan X (2005) The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin Sci Bull 50:1230–1234CrossRefGoogle Scholar
- Metzger P, Largeau C (1994) A new type of ether lipid comprising phenolic moieties in Botryococcus braunii. Chemical structure and abundance, and geochemical implications. Org Geochem 22:801–814CrossRefGoogle Scholar
- Meyer M, Arsuaga J-L, de Filippo C, Nagel S, Aximu-Petri A, Nickel B, Martínez I, Gracia A, de Castro JMB, Carbonell E, Viola B, Kelso J, Prüfer K, Pääbo S (2016) Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504–507PubMedCrossRefPubMedCentralGoogle Scholar
- Moczydłowska M, Landing E, Zang W, Palacios T (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology 54:721–733CrossRefGoogle Scholar
- Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefPubMedCentralGoogle Scholar
- Moldowan JM (2000) Trails of life. Chem Br 36:34–37Google Scholar
- Moldowan JM, Jacobson SR (2000) Chemical signals for early evolution of major taxa: biosignatures and taxon-specific biomarkers. Int Geol Rev 42:805–812CrossRefGoogle Scholar
- Moldowan JM, Talyzina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science 281:1168–1170PubMedCrossRefPubMedCentralGoogle Scholar
- Moldowan JM, Fago FJ, Lee CY, Jacobson SR, Watt DS, Slougui N-E, Jeganathan A, Young DC (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247:309–312PubMedCrossRefPubMedCentralGoogle Scholar
- Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771PubMedCrossRefPubMedCentralGoogle Scholar
- Moldowan JM, Dahl J, Jacobson SR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (1996) Chemostratigraphic reconstruction of biofacies; molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24:159–162CrossRefGoogle Scholar
- Moldowan JM, Moldowan S, Blanco-Velandia V, Blanco-Velandia Y, Orejuela-Parra C, Bott G, Dahl J (2015) Llanos Basin: unraveling its complex petroleum systems with advanced geochemical technologies. AAPG Search Discovery 10776. http://www.searchanddiscovery.com/documents/2012/40979dahl/ndx_dahl.pdf
- Newman DK, Neubauer C, Ricci JN, Wu C-H, Pearson A (2016) Cellular and molecular biological approaches to interpreting ancient biomarkers. Annu Rev Earth Planet Sci 44:493–522CrossRefGoogle Scholar
- Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335CrossRefGoogle Scholar
- Nishizawa M, Takahata N, Terada K, Komiya T, Ueno Y, Sano Y (2005) Rare-earth element, lead, carbon, and nitrogen geochemistry of apatite-bearing metasediments from the 3.8 Ga Isua Supracrustal Belt, West Greenland. Int Geol Rev 47:952–970CrossRefGoogle Scholar
- Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538PubMedCrossRefPubMedCentralGoogle Scholar
- Pak R, Pemberton SG, Stasiuk L (2010) Paleoenvironmental and taphonomic implications of trace fossils in Ordovician kukersites. Bull Can Petrol Geol 58:141–158CrossRefGoogle Scholar
- Pancost RD, Freeman KH, Patzkowsky ME, Wavrek DA, Collister JW (1998) Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, U.S.A. Org Geochem 29:1649–1662CrossRefGoogle Scholar
- Pang K, Tang Q, Schiffbauer JD, Yao J, Yuan X, Wan B, Chen L, Ou Z, Xiao S (2013) The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11:499–510PubMedPubMedCentralGoogle Scholar
- Papineau D, De Gregorio BT, Cody GD, Fries MD, Mojzsis SJ, Steele A, Stroud RM, Fogel ML (2010) Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Acta 74:5862–5883CrossRefGoogle Scholar
- Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629PubMedCrossRefPubMedCentralGoogle Scholar
- Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41PubMedCrossRefPubMedCentralGoogle Scholar
- Pawlowska MM, Butterfield NJ, Brocks JJ (2013) Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41:103–106CrossRefGoogle Scholar
- Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111CrossRefGoogle Scholar
- Pearson A, Ingalls AE (2013) Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci 41:359–384CrossRefGoogle Scholar
- Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677PubMedCrossRefPubMedCentralGoogle Scholar
- Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vol 1 & 2. Cambridge University Press, Cambridge. 1155 ppGoogle Scholar
- Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular paleobiology. Palaeontology 50:775–809CrossRefGoogle Scholar
- Pinti DL, Altermann W (2011) Apex Chert, microfossils. In: Gargaud M, Amils R, Quintanilla JC, Cleaves HJ, Irvine WM, Pinti DL, Viso M (eds) Encyclopedia of astrobiology. Springer, Berlin, pp 48–54CrossRefGoogle Scholar
- Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014a) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286CrossRefGoogle Scholar
- Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014b) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638PubMedCrossRefPubMedCentralGoogle Scholar
- Rampen SW, Schouten S, Abbas B, Panoto FE, Muyzer G, Campbell CN, Fehling J, Sinninghe Damsté JS (2007a) On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology 35:419–422CrossRefGoogle Scholar
- Rampen SW, Schouten S, Sinninghe Damsté JS (2007b) Origin of 4-desmethyl-dinosteranes in sediments and oils. In: 23rd international meeting on organic geochemistry, Torquay, 9–14 Sept 2007 Abstract O43Google Scholar
- Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci 104:15099–15104PubMedCrossRefPubMedCentralGoogle Scholar
- Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–118CrossRefGoogle Scholar
- Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefPubMedCentralGoogle Scholar
- Raymond J, Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203CrossRefGoogle Scholar
- Reed JD, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their sources. Org Geochem 10:347–358CrossRefGoogle Scholar
- Retallack GJ, Jahren AH (2008) Methane release from igneous intrusion of coal during late Permian extinction events. J Geol 116:1–20CrossRefGoogle Scholar
- Ricci JN, Coleman ML, Welander PV, Sessions AL, Summons RE, Spear JR, Newman DK (2014) Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J 8:675–684PubMedCrossRefPubMedCentralGoogle Scholar
- Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672PubMedCrossRefPubMedCentralGoogle Scholar
- Saito R, Oba M, Kaiho K, Schaeffer P, Adam P, Takahashi S, Nara FW, Chen Z-Q, Tong J, Tsuchiya N (2014) Extreme euxinia prior to the Middle Triassic biotic recovery from the latest Permian mass extinction. Org Geochem 73:113–122CrossRefGoogle Scholar
- Sarafian AR, Nielsen SG, Marschall HR, McCubbin FM, Monteleone BD (2014) Early accretion of water in the inner solar system from a carbonaceous chondrite–like source. Science 346:623–626PubMedCrossRefPubMedCentralGoogle Scholar
- Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134CrossRefGoogle Scholar
- Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58:769–785PubMedPubMedCentralCrossRefGoogle Scholar
- Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefPubMedCentralGoogle Scholar
- Schopf J (2006) Fossil evidence of Archaean life. Philos Trans R Soc B: Biol Sci 361:869–885CrossRefGoogle Scholar
- Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771CrossRefGoogle Scholar
- Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73PubMedCrossRefGoogle Scholar
- Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155CrossRefGoogle Scholar
- Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
- Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16:1051–1058CrossRefGoogle Scholar
- Schwarzbauer A, Jovančićević B (2016) From biomolecules to chemofossils. Springer, 160 ppGoogle Scholar
- Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Biomolecular characterization and protein sequences of the Campanian Hadrosaur B. canadensis. Science 324:626–663PubMedCrossRefPubMedCentralGoogle Scholar
- Schweitzer MH, Zheng W, Cleland TP, Bern M (2013) Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52:414–423PubMedCrossRefPubMedCentralGoogle Scholar
- Sephton MA, Looy CV, Brinkhuis H, Wignall PB, de Leeuw JW, Visscher H (2005) Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33:941–944CrossRefGoogle Scholar
- Sephton MA, Sims MR, Court RW, Luong D, Cullen DC (2013) Searching for biomolecules on Mars: considerations for operation of a Life Marker Chip instrument. Planet Space Sci 86:66–74CrossRefGoogle Scholar
- Seufferheld M, Vieira MCF, Ruiz FA, Rodrigues CO, Moreno SNJ, Docampo R (2003) Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978PubMedCrossRefPubMedCentralGoogle Scholar
- Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean Era. Nature 410:77–81PubMedCrossRefPubMedCentralGoogle Scholar
- Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14CrossRefGoogle Scholar
- Sherwood Lollar B, Lacrampe-Couloume G, Telling J, McCollom TM, Slater GF (2006) Compound specific isotope analysis and the challenge for identifying life: the role of biosignatures and abiosignatures. Geochim Cosmochim Acta 70:A582CrossRefGoogle Scholar
- Siljeström S, Volk H, George SC, Lausmaa J, Sjövall P, Dutkiewicz A, Hode T (2013) Analysis of single oil-bearing fluid inclusions in mid-Proterozoic sandstones (Roper Group, Australia). Geochim Cosmochim Acta 122:448–463CrossRefGoogle Scholar
- Simoneit BRT (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33:1255–1261CrossRefGoogle Scholar
- Sinninghe Damsté JS, Muyzer G, Abbas B, Rampen SW, Massé G, Allard WG, Belt ST, Robert J-M, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304:584–587CrossRefGoogle Scholar
- Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Foesel BU, Wüst PK, Overmann J, Tank M, Bryant DA, Dunfield PF, Houghton K, Stott MB (2014) Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4. Appl Environ Microbiol 80:5207–5218PubMedPubMedCentralCrossRefGoogle Scholar
- Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontology 65:1–12CrossRefGoogle Scholar
- Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179PubMedPubMedCentralCrossRefGoogle Scholar
- Stasiuk LD, Osadetz KG (1990) Progress in the life cycle and phyletic affinity of Gloeocapsomorpha prisca Zalessky 1917 from Ordovician rocks in Canadian Williston Basin. Geol Sur Canada Curr Res D:127–137Google Scholar
- Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am J Sci 290-A:212–244Google Scholar
- Summons RE, Brassell SC, Eglinton G, Evans E, Horodyski RJ, Robinson N, Ward DM (1988a) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta 52:2625–2637CrossRefGoogle Scholar
- Summons RE, Powell TG, Boreham CJ (1988b) Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim Cosmochim Acta 52:1747–1763CrossRefGoogle Scholar
- Summons RE, Thomas J, Maxwell JR, Boreham CJ (1992) Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim Cosmochim Acta 56:2437–2444CrossRefGoogle Scholar
- Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacteial oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefGoogle Scholar
- Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006a) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968CrossRefGoogle Scholar
- Summons RE, Love GD, Hays L, Cao C, Jin Y, Shen SZ, Grice K, Foster CB (2006b) Molecular evidence for prolonged photic zone euxinia at the Meishan and East Greenland sections of the Permian Triassic Boundary. Geochim Cosmochim Acta 70:A625Google Scholar
- Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500CrossRefGoogle Scholar
- Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM (2006) Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32:179–190CrossRefGoogle Scholar
- Thomas BM, Willink RJ, Grice K, Twitchett RJ, Purcell RR, Archbold NW, George AD, Tye S, Alexander R, Foster CB, Barber CJ (2004) Unique marine Permian-Triassic boundary section from Western Australia. Aust J Earth Sci 51:423–430CrossRefGoogle Scholar
- Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci 103:5442–5447PubMedCrossRefGoogle Scholar
- Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105PubMedCrossRefGoogle Scholar
- Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519PubMedCrossRefGoogle Scholar
- Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci 104:14260–14265PubMedCrossRefGoogle Scholar
- Volk H, George SC, Dutkiewicz A, Ridley J (2005) Characterisation of fluid inclusion oil in a Mid-Proterozoic sandstone and dolerite (Roper Superbasin, Australia). Chem Geol 223:109–135CrossRefGoogle Scholar
- Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159CrossRefGoogle Scholar
- Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman JK (ed) The handbook of environmental chemistry, Vol 2: Reactions and processes, Part N, Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin, pp 27–70CrossRefGoogle Scholar
- Volkman JK (2014) Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Org Geochem 75:36–47CrossRefGoogle Scholar
- Wacey D, McLoughlin N, Whitehouse MJ, Kilburn MR (2010) Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38:1115–1118CrossRefGoogle Scholar
- Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702CrossRefGoogle Scholar
- Wacey D, Noffke N, Cliff J, Barley ME, Farquhar J (2015) Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480 Ma Dresser formation: new insights into sulfur cycling on the early Earth. Precambrian Res 258:24–35CrossRefGoogle Scholar
- Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009a) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
- Waldbauer JR, Newman DK, Summons RE (2009b) Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc Natl Acad Sci 108:13409–13414CrossRefGoogle Scholar
- Wallace MW, Hood AS, Woon EMS, Hoffmann K-H, Reed CP (2014) Enigmatic chambered structures in Cryogenian reefs: the oldest sponge-grade organisms? Precambrian Res 255:109–123CrossRefGoogle Scholar
- Wang C, Visscher H (2007) Abundance anomalies of aromatic biomarkers in the Permian-Triassic boundary section at Meishan, China – evidence of end-Permian terrestrial ecosystem collapse. Palaeogeogr Palaeoclimatol Palaeoecol 252:291–303CrossRefGoogle Scholar
- Ward LM, Kirschvink JL, Fischer WW (2016) Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig Life Evol Biosph 46:51–65PubMedCrossRefPubMedCentralGoogle Scholar
- Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463PubMedCrossRefPubMedCentralGoogle Scholar
- Wei JH, Yin X, Welander PV (2016) Sterol synthesis in diverse bacteria. Front Microbiol 7:990PubMedPubMedCentralGoogle Scholar
- Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116PubMedCrossRefPubMedCentralGoogle Scholar
- Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci 109:12905–12910PubMedCrossRefPubMedCentralGoogle Scholar
- Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci 107:8537–8542PubMedCrossRefPubMedCentralGoogle Scholar
- Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285PubMedCrossRefPubMedCentralGoogle Scholar
- Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330CrossRefGoogle Scholar
- Whiteside JH, Grice K (2016) Biomarker records associated with mass extinction events. Annu Rev Earth Planet Sci 44:581–612CrossRefGoogle Scholar
- Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795PubMedCrossRefPubMedCentralGoogle Scholar
- Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger J-L, Nathan R, Armitage S, de Hoog C-J, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111–114PubMedPubMedCentralCrossRefGoogle Scholar
- Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236PubMedCrossRefPubMedCentralGoogle Scholar
- Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
- Xie SC, Pancost RD, Yin HF, Wang HM, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497PubMedCrossRefPubMedCentralGoogle Scholar
- Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730PubMedCrossRefPubMedCentralGoogle Scholar
- Zhang S, Moldowan JM, Li M, Bian L, Zhang B, Wang F (2002) The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance. Sci China Ser D 45:193–200CrossRefGoogle Scholar
- Zhu S, Zhu M, Knoll AH, Yin Z, Zhao F, Sun S, Qu Y, Shi M, Liu H (2016) Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang formation in North China. Nature Commun 7:11500CrossRefGoogle Scholar
- Zinniker D (2005) New insights into molecular fossils : the fate of terpenoids and the origin of gem-dialkylalkanes in the geological environment. PhD. dissertation, Stanford Univ: 321 pp.Google Scholar