Advertisement

Mud Volcano Biogeochemistry

  • Helge NiemannEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Mud volcanoes are frequently encountered geo-structures at active and passive continental margins. In contrast to magmatic volcanoes, mud volcanoes are marine or terrestrial, topographic elevation built from vertically rising fluidized mud or mud breccia. Commonly, these structures have a crater, hummocky rim, and caldera. Mud volcanism is triggered by various geological processes which lead to a high pore fluid pressure at great depth, sediment instabilities, and a subsequent discharge of mud, fluids, and gases such as hydrocarbons (mostly the greenhouse gas methane). Although global estimates of methane emissions from mud volcanoes vary over two orders of magnitude, mud volcanism could be an important source for atmospheric methane. However, a substantial fraction of the hydrocarbons are retained in the mud volcanoes surface sediments or, in the particular case of marine mud volcanoes, are consumed by microbes in the water column. In sediments, the upwelled hydrocarbons fuel a variety of free-living and symbiotic, chemosynthetic communities that oxidize these with electron acceptors such as oxygen or sulfate from the water column or the atmosphere. The activity of the chemosynthetic communities is regulated by the availability of either electron donors (hydrocarbons) or acceptors which, in return, is determined by mass transport processes. Most important in this context are the magnitudes of upward advection of electron donors and the influx of electron acceptors due to diffusion and bioirrigation.

References

  1. Alain K, Holler T, Musat F, Elvert M, Treude T, Kruger M (2006) Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol 8(4):574–590CrossRefGoogle Scholar
  2. Aliyev AA, Guliyev IS, Belov IS (2002) Catalogue of recorded eruption of mud volcanoes of Azerbaijan (for period of years 1810–2001). Nafta Press, BakerGoogle Scholar
  3. Aloisi G, Drews M, Wallmann K, Bohrmann G (2004) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea) – part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet Sci Lett 225(3–4):347–363Google Scholar
  4. Berner RA (1980) Early diagenesis – a theoretical approach. Princeton University Press, PrincetonGoogle Scholar
  5. Boudreau BP (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, BerlinCrossRefGoogle Scholar
  6. Brown KM (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J Geophys Res Solid Earth Planets 95(B6):8969–8982CrossRefGoogle Scholar
  7. Brown KM, Tryon MD, DeShon HR, Dorman LM, Schwartz SY (2005) Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet Sci Lett 238(1–2):189–203CrossRefGoogle Scholar
  8. Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res I-Oceanogr Res Pap 50(8):941–958CrossRefGoogle Scholar
  9. Cita MB, Ryan WBF, Paggi L (1981) Prometheus mud breccia: an example of shale diapirism in the western Mediterranean Ridge. Ann Géol Pays Hellén 30:543–570Google Scholar
  10. Cordes EE, Arthur MA, Shea K, Arvidson RS, Fisher CR (2005) Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biol 3(3):497–506CrossRefGoogle Scholar
  11. Damm E, Budéus G (2003) Fate of vent-derived methane in seawater above the Hakon Mosby mud volcano (Norwegian Sea). Mar Chem 82:1–11CrossRefGoogle Scholar
  12. de Beer D, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U, Schluter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Hakon Mosby Mud Volcano. Limnol Oceanogr 51(3):1315–1331CrossRefGoogle Scholar
  13. Dimitrov LI (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59(1–4):49–76CrossRefGoogle Scholar
  14. Dimitrov LI (2003) Mud volcanoes – a significant source of atmospheric methane. Geo-Mar Lett 23(3–4):155–161CrossRefGoogle Scholar
  15. Einstein A (1905) The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann Phys 17(8):549–560CrossRefGoogle Scholar
  16. Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49(8):777–789CrossRefGoogle Scholar
  17. Etiope G, Milkov AV (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46(8):997–1002CrossRefGoogle Scholar
  18. Feseker T, Dählmann A, Foucher J-P, Harmegnies F (2009) In-situ sediment temperature measurements and geochemical porewater data suggest highly dynamic fluid flow at Isis mud volcano, eastern Mediterranean Sea. Mar Geol 261:128–137CrossRefGoogle Scholar
  19. Feseker T, Boetius A, Wenzhöfer F, Blandin J, Olu K, Yoerger DR, Camilli R, German CR, de Beer D (2014) Eruption of a deep-sea mud volcano triggers rapid sediment movement. Nat Commun 5:5385CrossRefGoogle Scholar
  20. Fick A (1855) Über diffusion. Poggendorf’s Annalen der Physik und Chemie 94:59–86CrossRefGoogle Scholar
  21. Fischer D, Sahling H, Nöthen K, Bohrmann G, Zabel M, Kasten S (2012) Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences 9:2013CrossRefGoogle Scholar
  22. Haese RR (2002) Macrobenthic activity and its effects on biogeochemical reactions and fluxes. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlüter M, Van Weering TCE (ed) Ocean margin systems. Springer, pp. 219–234, Springer, Berlin-HeidelbergCrossRefGoogle Scholar
  23. Haese RR, Hensen C, de Lange GJ (2006) Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225(1–4):191–208CrossRefGoogle Scholar
  24. Henry P, LePichon X, Lallemant S, Lance S, Martin JB, Foucher JP, FialaMedioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J Geophys Res-Solid Earth 101(B9):20297–20323CrossRefGoogle Scholar
  25. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz – indications for hydrothermal imprint. Geochim Cosmochim Acta 71(5):1232–1248CrossRefGoogle Scholar
  26. Jørgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5(10):770–781CrossRefGoogle Scholar
  27. Joye SB, MacDonald IR, Montoya JP, Peccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2(3):295–309CrossRefGoogle Scholar
  28. Karyono K, Obermann A, Lupi M, Masturyono M, Hadi S, Syafri I, Abdurrokhim A, Mazzini A (2017) Lusi, a clastic-dominated geysering system in Indonesia recently explored by surface and subsurface observations. Terra Nova 29:13–19CrossRefGoogle Scholar
  29. Kaul N, Foucher JP, Heesemann M (2006) Estimating mud expulsion rates from temperature measurements on Hakon Mosby Mud Volcano, SW Barents Sea. Mar Geol 229(1–2):1–14CrossRefGoogle Scholar
  30. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks, Nature Geoscience, 6(10):813–823CrossRefGoogle Scholar
  31. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63(1):311–334.  https://doi.org/10.1146/annurev.micro.61.080706.093130CrossRefGoogle Scholar
  32. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):B-1–B-49CrossRefGoogle Scholar
  33. Kopf AJ (2003) Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate. Int J Earth Sci 92(5):806–816CrossRefGoogle Scholar
  34. Kopf A, Klaeschen D, Mascle J (2001) Extreme efficiency of mud volcanism in dewatering accretionary prisms. Earth Planet Sci Lett 189(3–4):295–313CrossRefGoogle Scholar
  35. Lance S, Henry P, Le Pichon X, Lallemant S, Chamley H, Rostek F, Faugeres JC, Gonthier E, Olu K (1998) Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology. Mar Geol 145(3–4):255–292CrossRefGoogle Scholar
  36. Linke P, Suess E, Torres M, Martens V, Rugh WD, Ziebis W, Kulm LD (1994) In situ measurement of fluid flow from cold seeps at active continental margins. Deep-Sea Res I 41(4):721–739CrossRefGoogle Scholar
  37. Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235(1–2):79–95CrossRefGoogle Scholar
  38. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73(10):3348–3362CrossRefGoogle Scholar
  39. Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S, Akhmetzhanov A, Boon N (2013) Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol Ecol 83:214–231CrossRefGoogle Scholar
  40. Manga M, Brumm M, Rudolph ML (2009) Earthquake triggering of mud volcanoes. Mar Pet Geol 26:1785–1798CrossRefGoogle Scholar
  41. Mazzini A, Etiope G (2017) Mud volcanism: An updated review, Earth-Science Reviews, 168, 81–112,  https://doi.org/10.1016/j.earscirev.2017.03.001CrossRefGoogle Scholar
  42. Mazzini A, Svensen H, Akhmanov GG, Aloisi G, Planke S, Malthe-Sorenssen A, Istadi B (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet Sci Lett 261(3–4):375–388CrossRefGoogle Scholar
  43. Mazzini A, Svensen H, Planke S, Guliyev I, Akhmanov GG, Fallik T, Banks D (2009) When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Mar Pet Geol 26:1704–1715CrossRefGoogle Scholar
  44. Mellors R, Kilb D, Aliyev A, Gasanov A, Yetirmishli G (2007) Correlations between earthquakes and large mud volcano eruptions. J Geophys Res-Solid Earth 112(B4):B04304CrossRefGoogle Scholar
  45. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167(1–2):29–42CrossRefGoogle Scholar
  46. Milkov AV, Sassen R, Apanasovich TV, Dadashev FG (2003) Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys Res Lett 30(2):9CrossRefGoogle Scholar
  47. Mukhtarov AS, Kadirov FA, Guliyev IS, Feyzullayev A, Lerche I (2003) Temperature evolution in the Lokbatan mud volcano crater (Azerbaijan) after the eruption of 25 October 2001. Energy Explor Exploit 21(3):187–207CrossRefGoogle Scholar
  48. Murton BJ, Biggs J (2003) Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz. Mar Geol 195(1–4):223–236CrossRefGoogle Scholar
  49. Muyakshin SI, Sauter E (2010) The hydroacoustic method for the quantification of the gas flux from a submersed bubble plume. Oceanology 50:995–1001CrossRefGoogle Scholar
  50. Niemann H, Duarte J, Hensen C, Omoregie E, Magalhaes VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006a) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70(21):5336–5355CrossRefGoogle Scholar
  51. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006b) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefGoogle Scholar
  52. Niemann H, Linke P, Knittel K, MacPherson E, Boetius A, Brückmann W, Larvik G, Wallmann K, Schacht U, Omoregie E, Hilton D, Brown K, Rehder G (2013) Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone. PLoS One 8:e74894–e74894CrossRefGoogle Scholar
  53. Nikolovska A, Sahling H, Bohrmann G (2008) Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea, Geochemistry Geophysics Geosystems, 9(10)CrossRefGoogle Scholar
  54. Norton WH (1917) A classification of breccias. J Geol 25:160–194CrossRefGoogle Scholar
  55. Olu K, Lance S, Sibuet M, Henry P, FialaMedioni A, Dinet A (1997) Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep-Sea Res I-Oceanograp Res Pap 44(5):811–841CrossRefGoogle Scholar
  56. Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Roy H, Stadnitskaia A, Foucher JP, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–3215CrossRefGoogle Scholar
  57. Ostrovsky I, McGinnis DF, Lapidus L, Eckert W (2008) Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake, Limnology and Oceanography: Methods, 6, 105–118Google Scholar
  58. Planke S, Svensen H, Hovland M, Banks DA, Jamtveit B (2003) Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar Lett 23(3–4):258–268CrossRefGoogle Scholar
  59. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513CrossRefGoogle Scholar
  60. Sahling H, Bohrmann G, Artemov YG, Bahr A, Bruning M, Klapp SA, Klaucke I, Kozlova E, Nikolovska A, Pape T, Reitz A, Wallmann K (2009) Vodyanitskii mud volcano, Sorokin trough, Black Sea: geological characterization and quantification of gas bubble streams. Mar Pet Geol 26:1799–1811CrossRefGoogle Scholar
  61. Sauter EJ, Muyakshin SI, Charlou JL, Schluter M, Boetius A, Jerosch K, Damm E, Foucher JP, Klages M (2006) Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243(3–4):354–365CrossRefGoogle Scholar
  62. Schmincke H-U (2004) Volcanism, 2nd ed., Springer, BerlinCrossRefGoogle Scholar
  63. Schneider von Deimling J, Brockhoff J, Greinert J (2007) Flare imaging with multibeam systems: Data processing for bubble detection at seeps, Geochemistry Geophysics Geosystems, 8(6),  https://doi.org/10.1029/2007GC001577CrossRefGoogle Scholar
  64. Soetaert K, Van Oevelen D, Sommer S (2012) Modelling the impact of Siboglinids on the biogeochemistry of the Captain Arutyunov mud volcano (Gulf of Cadiz). Biogeosciences (BG) 9:5341–5352CrossRefGoogle Scholar
  65. Somoza L, Diaz-del-Rio V, Leon R, Ivanov M, Fernandez-Puga MC, Gardner JM, Hernandez-Molina FJ, Pinheiro LM, Rodero J, Lobato A, Maestro A, Vazquez JT, Medialdea T, Fernandez-Salas LM (2003) Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data. Mar Geol 195(1–4):153–176CrossRefGoogle Scholar
  66. Steinle L, Graves CA, Treude T, Ferre B, Biastoch A, Bussmann I, Berndt C, Krastel S, James RH, Behrens E, Boning CW, Greinert J, Sapart C-J, Scheinert M, Sommer S, Lehmann MF, Niemann H (2015) Water column methanotrophy controlled by a rapid oceanographic switch. Nat Geosci 8:378–382CrossRefGoogle Scholar
  67. Steinle L, Schmidt M, Bryant L, Haeckel M, Linke P, Sommer S, Zopfi J, Lehmann MF, Treude T, Niemannn H (2016) Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: implications for methane budgeting in seasonally stratified shallow seas. Limnol Oceanogr 61:367–386CrossRefGoogle Scholar
  68. Stewart SA, Davies RJ (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull 90(5):771–786CrossRefGoogle Scholar
  69. Treude T, Boetius A, Knittel K, Wallmann K, Jorgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol-Prog Ser 264:1–14CrossRefGoogle Scholar
  70. Veloso M, Greinert J, Mienert J, De Batist M (2015) A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: examples from the Arctic offshore NW-Svalbard. Limnol Oceanogr Methods 13:267–287CrossRefGoogle Scholar
  71. Vogt PR, Cherkashev A, Ginsburg GD, Ivanov GI, Crane K, Lein AY, Sundvor E, Pimenov NV, Egorov A (1997) Haakon Mosby mud volcano: a warm methane seep with seafloor hydrates and chemosynthesis-based ecosystem in late Quantemary Slide Valley, Bear Island Fan, Barents Sea passive margin. EOS Trans Am Geophys Union Suppl 78(17):187–189Google Scholar
  72. Wallmann K, Linke P, Suess E, Bohrmann G, Sahling H, Schlüter M, Dählmann A, Lammers S, Greinert J, von Mirbach N (1997) Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone. Geochim Cosmochim Acta 61(24):5209–5219CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Marine Microbiology & Biogeochemistry, and Utrecht UniversityNIOZ Royal Netherlands Institute for Sea Research’t HorntjeThe Netherlands
  2. 2.CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, Department of GeologyUiT the Arctic University of NorwayTromsøNorway

Personalised recommendations