Advertisement

Geological, Geochemical, and Microbial Factors Affecting Coalbed Methane

  • Curtis EvansEmail author
  • Karen Budwill
  • Michael Whiticar
Living reference work entry
  • 10 Downloads
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Coalbed methane (CBM) is an unconventional resource for natural gas production. Years of research have clearly demonstrated that, in addition to thermogenically produced CBM, microorganisms indigenous to the coal seams are capable of converting some of the hydrocarbon portion of the coal to methane. CBM production is, therefore, not only dependent on the types of microbes present and their metabolic activities but also on the physicochemical properties of the coal itself, such as depositional environments and history and chemical makeup. Understanding the geological, geochemical, and microbial factors affecting CBM formation can lead to the development of effective processes to enhance methane production rates and yields.

Keywords

Coalbed methane Coal seam gas Natural gas Microbial gas generation Geochemical factors of CBM Microbial methanogenesis Coal enrichment cultures Stimulated CBM methanogenesis 

References

  1. AER (Alberta Energy Regulator) (2014a) ST98-2014: Alberta’s energy reserves 2013 and supply/demand outlook 2014–2023. http://aer.ca/documents/sts/ST98/ST98-2014.pdf [chapter 8]
  2. AER (Alberta Energy Regulator) (2014b) Swan Hills Synfuels Ltd Well Blowout October 10, 2011: AER Investigation Report. http://www.aer.ca/documents/reports/IR-20140225-Synfuels.pdf
  3. Amy PS (1997) Microbial dormancy and survival in the subsurface. In: Amy PS, Haldeman DL (eds) The microbiology of the terrestrial deep subsurface. CRC Lewis Publishers, pp 185–203. ISBN: 978-0849383625Google Scholar
  4. An D, Caffrey SM, Soh J, Abu Laban N, Agrawal A, Brown D, Budwill K, Dong X, Dunfield PF, Foght J, Gieg L, Hallam S, He Z, Jack T, Klassen J, Larter S, Leopatra V, Nelson W, Nesbø CL, Oldenburg T, Page A, Ramos-Padron E, Rochman F, Saidi-Mehrabad A, Sensen CW, Tamas I, Tan BF, Wilson S, Wolbring G, Wong ML, Voordouw G (2013) Metagenomic of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 47:10708–10717.  https://doi.org/10.1021/es4020184CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ayers WB (2000) Methane production from thermally immature coal, fort union formation, Powder River Basin. AAPG annual meeting, New Orleans. http://www.searchanddiscovery.com/abstracts/html/2000/annual/abstracts/0032.htm
  6. Ayers WB (2002) Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins. AAPG Bull 86(11):1853–1890. WOS:000178870400002Google Scholar
  7. Barnhart EP, Weeks EP, Jones EJP, Ritter DJ, McIntosh JC, Clark AC, Ruppert LF, Cunningham AB, Vinson DS, Orem W, Fields MW (2016) Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed. Int J Coal Geol 162:14–26.  https://doi.org/10.1016/j.coal.2016.05.001CrossRefGoogle Scholar
  8. Berdugo-Clavijo C, Dong X, Soh J, Senson CW, Gieg LM (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81(1):124–133CrossRefGoogle Scholar
  9. Bezza FA, Chirwa EM (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644CrossRefGoogle Scholar
  10. Bhattacharya J (1988) Autocyclic and allocyclic sequences is river- and wave-dominated deltaic sediments of the upper cretaceous, Dunvegan formation, Alberta: core examples. In: James DP, Leckie DA (eds) Sequences, stratigraphy, sedimentology: surface and subsurface. CSPG proceedings. ISBN: 978-0-920230-60-1Google Scholar
  11. Bhutto AW, Bazmi AA, Zahedi G (2013) Underground coal gasification: from fundamentals to applications. Prog Energy Combust Sci 39(1):189–214.  https://doi.org/10.1016/j.pecs.2012.09.004CrossRefGoogle Scholar
  12. Blinderman MS, Saulov DN, Klimenko AY (2008) Forward and reverse combustion linking in underground coal gasification. Energy 33(3):446–454.  https://doi.org/10.1016/j.energy.2007.10.004CrossRefGoogle Scholar
  13. Catuneanu O (2003) Sequence stratigraphy of clastic systems. Geological Association of Canada short course notes, vol 16. ISBN: 978-0-919216-76-5Google Scholar
  14. Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier. ISBN: 978-0-444-51568-1Google Scholar
  15. Chalmers GRL, Bustin RM (2007) On the effects of petrographic composition on coalbed methane sorption. Int J Coal Geol 69(4):288–304.  https://doi.org/10.1016/j.coal.2006.06.002CrossRefGoogle Scholar
  16. Chironis, N. P. (1978). Coal age operating handbook of coal surface mining and reclamation. ISBN: 978-0070114586Google Scholar
  17. Chourey K, Nissen S, Vishnivetskaya T, Shah M, Pfiffner S, Hettich RL, Löffler FE (2013) Environmental proteomics reveals early microbial community response to biostimulation at a uranium- and nitrate-contaminated site. Proteomics 13:2921–2930.  https://doi.org/10.1002/pmic.201300155CrossRefPubMedGoogle Scholar
  18. Clarkson CR (2009) Case study: production data and pressure transient analysis of horseshoe canyon CBM wells. JCPT 48(10):27–38.  https://doi.org/10.2118/114485-PACrossRefGoogle Scholar
  19. Coe A (2005) The sedimentary record of sea-level change, 2nd edn. Open University. ISBN: 978-0-521-53842-8Google Scholar
  20. Cohen AD, Casagrande DJ, Andrejko MJ, Best GR (1984) The Okefenokee swamp: its natural history, geology, geochemistry. Wetland Surveys, Los AlamosGoogle Scholar
  21. Cokar M, Ford B, Gieg LM, Kallos MS, Gates ID (2013) Reactive reservoir simulation of biogenic shallow shale gas systems enabled by experimentally determined methane generation rates. Energy Fuels 27(5):2413–2421.  https://doi.org/10.1021/ef400616kCrossRefGoogle Scholar
  22. Colosimo F, Thomas R, Lloyd JR, Taylor KG, Boothman C, Smith AD, Lord R, Kalin RM (2016) Biogenic methane in shale gas and coal bed methane: a review of current knowledge and gaps. Int J Coal Geol 165:106–120.  https://doi.org/10.1016/j.coal.2016.08.011CrossRefGoogle Scholar
  23. Crossdale PJ, Beamish BB, Valix M (1998) Coalbed methane sorption related to coal composition. Int J Coal Geol 35:147–158.  https://doi.org/10.1016/S0166-5162(97)00015-3CrossRefGoogle Scholar
  24. Curiale JA, Curtis JB (2016) Organic geochemical applications to the exploration for source-rock reservoirs – a review. J Unconv Oil Gas Res 13:1–31.  https://doi.org/10.1016/j.juogr.2015.10.001CrossRefGoogle Scholar
  25. Dawson FM (1995) Coalbed methane: a comparison between Canada and the United States. GSC Bull 489. ISBN: 978-0-660-15753-5Google Scholar
  26. Dawson FM, Marchioni DL, Anderson TC, McDougall WJ (2000) An assessment of coalbed methane exploration projects in Canada. GSC Bull 549. ISBN: 978-0-660-17871-0Google Scholar
  27. de Oliveira DPS, Cawthorn RG (1999) Dolerite intrusion morphology at Majuba colliery, Northeast Karoo Basin, Republic of South Africa. Int J Coal Geol 41(4):333–349.  https://doi.org/10.1016/S0166-5162(99)00026-9CrossRefGoogle Scholar
  28. Eavenson HN (1939) Coal through the ages, 2nd edn. AIMME. http://www.worldcat.org/title/coal-through-the-ages/oclc/2886601
  29. EIA (US Energy Information Administration) (2016) International energy outlook. IEO2016. https://www.eia.gov/outlooks/ieo/ https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
  30. ERCB (Energy Resources Conservation Board) (2007) Coal conservation act http://www.qp.alberta.ca/documents/Acts/c17.pdf amendments for definition of ISCG/ISCL section 1(f.1), 1(f.2) and Oil and Gas Conservation Act http://www.qp.alberta.ca/documents/Acts/O06.pdf amendments for definition of ISCG/ISCL section 1(aa.01)
  31. Ertekin T, Sung W, Bilgesu HI (1991) Structural properties of coal that control Coalbed Methane Production. In: Peters DC (ed) Geology in coal resource utilization. ISBN:978-1-878907-22-0Google Scholar
  32. Etiope G, Klusman RW (2010) Methane microseepage in drylands: soil is not always a CH4 sink. J Integr Environ Sci 7(S1):31–38.  https://doi.org/10.1080/19438151003621359CrossRefGoogle Scholar
  33. Faiz M, Hendry P (2006) Significance of microbial activity in Australian coal bed methane reservoirs – a review. BCPG 54(3):261–272.  https://doi.org/10.2113/gscpgbull.54.3.261CrossRefGoogle Scholar
  34. Fischer F, Tropsch H (1926) Über die Reduktion des kohlenoxyds zu Methan am Eisenkontakt under Druck. Brennstoff-Chem 7:97. http://www.fischer-tropsch.org/Google Scholar
  35. Fischer F, Tropsch H (1930) Über die Herstellung synthetischer Ölgemische (Synthol) durch Aufbau aus Kohlenoxyd und Wasserstoff. Brennstoff-Chem 11:489. http://www.fischer-tropsch.org/Google Scholar
  36. Flores R (1998) Coalbed methane: from hazard to resource. Int J Coal Geol 35:3–26.  https://doi.org/10.1016/S0166-5162(97)00043-8CrossRefGoogle Scholar
  37. Formolo M (2010) The microbial production of methane and other volatile hydrocarbons. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 6]Google Scholar
  38. Formolo M, Martini A, Petsch S (2008) Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan basins. USA Int J Coal Geol 76(1–2):86–97.  https://doi.org/10.1016/j.coal.2008.03.005CrossRefGoogle Scholar
  39. Fortney R (1997) Life: an unauthorized biography – a natural history of the first four billion years of life on earth. HarperCollins. ISBN 978-0375401190Google Scholar
  40. Fralick PW, Schenk PE (1981) Molasse deposition and basin evolution in a wrench tectonic setting: the late Paleozoic, eastern Cumberland Basin, maritime Canada. In: Miall AD (ed) Sedimentation and tectonics in alluvial basins. GAC special paper 23. ISBN: 978-0-919216-19-6Google Scholar
  41. Friedmann SJ, Upadhye R, Kong FM (2009) Prospects for underground coal gasification in carbon-constrained world. Energy Procedia 1(1):4551–4557. GGCT 9.  https://doi.org/10.1016/j.egypro.2009.02.274CrossRefGoogle Scholar
  42. Furmann A, Schimmelmann A, Brassell SC, Mastalerz M, Picardel F (2013) Chemical compound classes supporting microbial methanogenesis in coal. Chem Geol 339:226–241.  https://doi.org/10.1016/j.chemgeo.2012.08.010CrossRefGoogle Scholar
  43. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of p polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol.  https://doi.org/10.3389/fmicb2012.01369
  44. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029.  https://doi.org/10.1128/AEM.00119-08CrossRefPubMedPubMedCentralGoogle Scholar
  45. Glossner AW, Gallagher LK, Landkamer L, Figueroa L, Munakata-Marr J, Mandernack KW (2016) Factors controlling the co-occurrence of microbial sulfate reduction and methanogenesis in coal bed reservoirs. Int J Coal Geol 165:121–132.  https://doi.org/10.1016/j.coal.2016.08.012CrossRefGoogle Scholar
  46. Golding SD, Rudolph V, Flores RM (2010) Asia Pacific coalbed methane symposium – selected papers from the 2008 Brisbane symposium on coalbed methane CO(2)-enhanced coalbed methane. Int J Coal Geol 82(3–4):133–134.  https://doi.org/10.1016/j.coal.2010.02.003CrossRefGoogle Scholar
  47. Golding SD, Boreham CJ, Esterle JS (2013) Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. Int J Coal Geol 120:24–40.  https://doi.org/10.1016/j.coal.2013.09.001CrossRefGoogle Scholar
  48. Green MS, Flanegan KC, Gilcrease PC (2008) Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A. Int. J. Coal Geol 76:34–45.  https://doi.org/10.1016/j.coal.2008.05.001CrossRefGoogle Scholar
  49. Guo H, Liu R, Yu A, Zhang H, Yun J, Li Y, Liu X, Pan J (2012) Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China. Int J Coal Geol 93:56–61.  https://doi.org/10.1016/j.coal.2012.01.014CrossRefGoogle Scholar
  50. Hacquebard PA, Donaldson JR (1970) Coal metamorphism and hydrocarbon potential in upper Paleozoic of Atlantic provinces. Can CJES 7(4):1139–1163.  https://doi.org/10.1139/e70-108CrossRefGoogle Scholar
  51. Hatch JR, Affolter RH (2002) Resource assessment of the Springfield, Herrin, Danville, and Baker Coals in the Illinois Basin. U.S. Geological Survey Professional Paper 1625–D. https://pubs.usgs.gov/pp/p1625d/ [chapter 3]
  52. Hazen TC, Rocha AM, Techtmann SM (2013) Advances in monitoring environmental microbes. Curr Opin Biotechnol 24:526–533.  https://doi.org/10.1016/j.copbio.2012.10.020CrossRefPubMedGoogle Scholar
  53. Hood A, Gutjahr CCM, Heacock RL (1975) Organic metamorphism and the generation of petroleum. AAPG Bull 59(6):986–996. WOS:A1975AE75400004Google Scholar
  54. Huang Z, Urynowicz MA, Colberg PJS (2013) Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1. Int J Coal Geol 115:97–105.  https://doi.org/10.1016/j.coal.2013.01.012CrossRefGoogle Scholar
  55. Humez P, Mayer B, Nightingale M, Becker V, Kingston A, Taylor S, Bayegnak G, Millot R, Kloppmann W (2016) Redox controls on methane formation, migration and fate in shallow aquifers. Hydrol Earth Syst Sci 20(7):2759–2777.  https://doi.org/10.5194/hess-20-2759-2016CrossRefGoogle Scholar
  56. Hüsers N, Werner P (2010) Coking processes and manufactured gas plants and their environmental impact on soil and groundwater. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 15]Google Scholar
  57. ICCP (International Committee for Coal and Organic Petrology) (1993) The international handbook of coal petrography. ISBN 978–84–617-5821-0. http://www.iccop.org/?p=4212 or http://www.iccop.org/publications/iccp-handbook/
  58. IEA (International Energy Agency) (2008) New trends in coalmine methane recovery and utilization. International Energy Agency, Coal Industry Advisory Board Information Paper. https://www.iea.org/publications/freepublications/publication/methane_recovery.pdf
  59. IEA (International Energy Agency) (2009) Coal mine methane in Russia: capturing the safety and environmental benefits. International Energy Agency, Coal Industry Advisory Board Workshop report. https://www.iea.org/publications/freepublications/publication/cmm_russia.pdf
  60. IEA (International Energy Agency) (2012) The Global Value of Coal. International Energy Agency, Coal Industry Advisory Board report. https://www.iea.org/publications/insights/insightpublications/global_value_of_coal.pdf. See also https://www.iea.org/publications/freepublications/publication/KeyCoalTrends.pdf http://www.iea.org/statistics/topics/coal/
  61. IEA (International Energy Agency) (2013) 21st century coal: advanced technology and global energy solution. International Energy Agency, Coal Industry Advisory Board report. https://www.iea.org/publications/insights/insightpublications/21stCenturyCoal_FINAL_WEB.pdf
  62. Jochmann MA, Schmidt TC (2012) Compound specific stable isotope analysis. RSC Publishing. ISBN: 978-1-84973-157-7Google Scholar
  63. Johnson RC, Flores RM (1998) Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in cook inlet Matanuska basin, Alaska. USA Can Int J Coal Geol 35(1–4):241–282.  https://doi.org/10.1016/S0166-5162(97)00016-5CrossRefGoogle Scholar
  64. Kirby BM, Vengadajellum CJ, Burton SG, Cowan DA (2010) Coal, coal mines and spoil heaps. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 49]Google Scholar
  65. Kissell FN, McCulloch CM, Elder CH (1973) The direct method of determining methane content of coalbeds for ventilation design. USBM Bureau of Mines Report of Investigations RI 7767. https://permanent.access.gpo.gov/lps97495/cdc_9220DS1.pdf
  66. Klimenko AY (2009) Early ideas in underground coal gasification and their evolution. Energies 2(2):456–476.  https://doi.org/10.3390/en20200456CrossRefGoogle Scholar
  67. Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53:3–13.  https://doi.org/10.1016/j.femsec.2004.12.009CrossRefPubMedGoogle Scholar
  68. Kotsyurbenko OR (2010) Soil, wetlands, peat. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 50]Google Scholar
  69. Lancaster DE (1996) Production from fractured shales. SPE reprint series, issue 45. ISBN: 978-1-55563-071-3. http://store.spe.org/Production-From-Fractured-Shales-P52.aspx
  70. Landis ER, Weaver TN (1993) Global coal occurrence. In: Law BE, Rice DD (eds) Hydrocarbons from coal. AAPG studies in geology, vol 38. http://geoscienceworld.org/content/hydrocarbons-from-coalGoogle Scholar
  71. Law BE, Rice DD (1993) Hydrocarbons from coal. AAPG Stud Geol 38. http://geoscienceworld.org/content/hydrocarbons-from-coal
  72. Lawson CE, Strachan CR, Williams DD, Koziel S, Hallam SJ, Budwill K (2015) Patterns of endemism and habitat selection in coalbed methane microbial communities. Appl Environ Microbiol 81:7924–7937.  https://doi.org/10.1128/AEM.01737-15CrossRefPubMedPubMedCentralGoogle Scholar
  73. Levine DG, Schlosberg RH, Silbernagel BG (1982) Understanding the chemistry and physics of coal structure (a review). PNAS 79(10):3365–3370.  https://doi.org/10.1073/pnas.79.10.3365CrossRefGoogle Scholar
  74. Li Y, Tang D, Xu H, Elsworth D, Meng Y (2015) Geological and hydrological controls on water coproduced with coalbed methane in Liulin, eastern Ordos basin, China. AAPG Bull 99(2):207–229.  https://doi.org/10.1306/07211413147CrossRefGoogle Scholar
  75. Liu Y, Urynowicz MA, Bagley DM (2013) Ethanol conversion to methane by a coal microbial community. Int J Coal Geol 115:85–91.  https://doi.org/10.1016/j.coal.2013.02.010CrossRefGoogle Scholar
  76. Long DGF (1981) Dextral strike slip faults in the Canadian cordillera and depositional environments of related fresh-water Intermontane coal basins. In: Miall AD (ed) Sedimentation and tectonics in alluvial basins. GAC special paper 23. ISBN: 978-0-919216-19-6Google Scholar
  77. Madigan MT, Martin JM, Parker J (2017) Brock biology of microorganisms. Prentice Hall. ISBN: 978-0134268668 [15th edition]Google Scholar
  78. Mariño J, Marshak S, Mastalerz M (2015) Evidence for stratigraphically controlled paleogeotherms in the Illinois Basin based on vitrinite-reflectance analysis: implications for interpreting coal-rank anomalies. AAPG Bull 99: 10: 1803–1825.  https://doi.org/10.1306/04151513001 or http://archives.datapages.com/data/bulletns/2015/10oct/BLTN13001/BLTN13001.html
  79. Matter JM, Broecker WS, Gislason SR, Gunnlaugsson E, Oelkers EH, Stute M, Sigurdardóttir H, Stefansson A, Alfreðsson HA, Aradóttir ES, Axelsson G, Sigfússon B, Wolff-Boenisch D (2011) The CarbFix pilot project – storing carbon dioxide in basalt. Energy Procedia 4:5579–5585.  https://doi.org/10.1016/j.egypro.2011.02.546CrossRefGoogle Scholar
  80. McCulloch CM, Levine JR, Kissell FN, Deul M (1975) Measuring the methane content of bituminous coalbeds. USBM Bureau of Mines Report of Investigations RI 8043. https://permanent.access.gpo.gov/lps98148/ri8043.pdf
  81. Meckenstock RU, Safinowski M, Gridder C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36CrossRefGoogle Scholar
  82. Meckenstock RU, Lueders T, Griebler C, Selesi D (2010) Microbial hydrocarbon degradation at coal gasfication plants. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 50]Google Scholar
  83. Midgley DJ, Hendry P, Pinetown KL, Fuentes D, Gong S, Mitchell DL, Faiz M (2010) Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin. Aust Int J Coal Geol 82:232–239.  https://doi.org/10.1016/j.coal.2010.01.009CrossRefGoogle Scholar
  84. Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe Magazine July Issue. American Society for Microbiology. https://www.asm.org/ccLibraryFiles/FILENAME/000000005069/znw00709000329.pdf
  85. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454.  https://doi.org/10.1038/nrmicro1892CrossRefPubMedGoogle Scholar
  86. NEB (National Energy Board of Canada) (2007) Overview and economics of horseshoe canyon coalbed methane development. https://www.neb-one.gc.ca/nrg/sttstc/ntrlgs/rprt/archive/hrsshcnynclbdmthn2007/hrsshcnynclbdmthn-eng.pdf
  87. Nelson CR, Hill DG, Pratt TJ (2000) Properties of Paleocene fort union formation canyon seam coal at the triton Federal Coalbed Methane Well, Campbell County, Wyoming. SPE/CERI gas technology symposium, Calgary. SPE-59786-MS.  https://doi.org/10.2118/59786-MS.
  88. Nielsen CV, Richardson GF (1982) Keystone coal industry manual. ISBN: 978-0076068258Google Scholar
  89. Niemann M, Whiticar MJ (2017) Stable isotope systematics of coalbed gas during desorption and production. Geosciences 7(43):1–21.  https://doi.org/10.3390/geosciences7020043CrossRefGoogle Scholar
  90. Page SE, Rieley JO, Wust R (2006) Lowland tropical peatlands of Southeast Asia. In: Martini IP, Cortizas AM, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes. Developments in Earth surface processes, vol 9, pp 145–172.  https://doi.org/10.1016/S0928-2025(06)09007-9CrossRefGoogle Scholar
  91. Pant LM, Huang H, Secanell M, Larter S, Mitra SK (2015) Multi scale characterization of coal structure for mass transport. Fuel 159:315–323.  https://doi.org/10.1016/j.fuel.2015.06.089CrossRefGoogle Scholar
  92. Park SY, Liang Y (2016) Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel 166:258–267.  https://doi.org/10.1016/j.fuel.2015.10.121CrossRefGoogle Scholar
  93. Pearson A (2010) Pathways of carbon assimilation and their impact on organic Matter values δ13C. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. ISBN: 978-3-540-77584-3 [chapter 09]Google Scholar
  94. Peck C (1999) Review of coalbed methane development in the Powder River Basin of Wyoming/Montana. SPE Rocky Mountain regional meeting, Gillette. SPE-55801-MS.  https://doi.org/10.2118/55801-MS
  95. Peters DC (1991) Geology in coal resource utilization. AAPG, EMD Techbooks. ISBN: 1-878907-22-0Google Scholar
  96. PTAC (Petroleum Technology Alliance Canada) (2017) Alternative use of legacy underground mines as energy infrastructure – Technology Roadmap Information Session. Presentation by New Paradigm Engineering, Calgary, 23 Mar 2017Google Scholar
  97. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, PMH K, Krüger M, Lueders T, Martins BM, Musat IF, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann M, Vogt C, von Bergen M, Wilkes H (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28CrossRefGoogle Scholar
  98. Rahmani RA, Smith DG (1988) The Cadotte member of Northwestern Alberta: a high-energy barred shoreline. In: James DP, Leckie DA (eds) Sequences, stratigraphy, sedimentology: surface and subsurface. CSPG proceedings. ISBN: 0-920230-60-1Google Scholar
  99. Rashid MA (1985) Geochemistry of marine humic compounds. Springer. ISBN:0-387-96135-6Google Scholar
  100. Riese WC, Pelzmann WL, Snyder GT (2005) New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA. In: Warwick PD (ed) Coal systems analysis. Geological Society of America special papers 387. ISBN: 978-0-8137-2387-7Google Scholar
  101. Rightmire CT, Eddy GE, Kirr JN (1984) Coalbed methane resources of the United States. AAPG studies in geology series, vol 17. ISBN:0-89181-023-4Google Scholar
  102. Ritter D, Vinson D, Barnhart E, Akob DM, Fields MW, Cunningham AB, Orem W, McIntosh J (2015) Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges. Int J Coal Geol 146:28–41.  https://doi.org/10.1016/j.coal.2015.04.013CrossRefGoogle Scholar
  103. Ryan BD, Dawson FM (1994) Coal and coalbed methane resource potential of the Bowser Basin, northern British-Columbia. Energy Sources 17(1):107–129.  https://doi.org/10.1080/00908319508946073CrossRefGoogle Scholar
  104. Salmachi A, Karacan CO (2017) Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile. Environ Earth Sci 76(5. A#: 200).  https://doi.org/10.1007/s12665-017-6505-0
  105. Schraufnagel VA, McBane RA (1994) Coalbed methane – a decade of success. Society of Petroleum Engineers SPE-28581.  https://doi.org/10.2118/28581-MS
  106. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen 186:3–12.  https://doi.org/10.1016/S0926-860X(99)00160-XCrossRefGoogle Scholar
  107. Seidle J (2011) Fundamentals of coalbed methane reservoir engineering. PennWell Books. ISBN: 978-1593700010Google Scholar
  108. Senthamaraikkannan G, Budwill K, Gates I, Mitra S, Prasad V (2016) Kinetic Modeling of the biogenic production of coalbed methane. Energy and Fuels 30(2):871–883.  https://doi.org/10.1021/acs.energyfuels.5b02450CrossRefGoogle Scholar
  109. Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y (2007) Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology 5:423–433.  https://doi.org/10.1111/j.1472-4669.2007.00123.xCrossRefGoogle Scholar
  110. Singh RD (1997) Principles and practices of modern coal mining. New Age Publications. ISBN: 81-224-0974-1Google Scholar
  111. Singh DN, Kumar A, Sarbhai MP, Tripathi AK (2012) Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane. Appl Microbiol Biotechnol 93(3):1337–1350.  https://doi.org/10.1007/s00253-011-3778-1CrossRefPubMedGoogle Scholar
  112. Smith JR, Jeffries TC, Adetutu EM, Fairweather PG, Mitchell JG (2013) Determining the metabolic footprints of hydrocarbon degradation using multivariate analysis. PLOS ONE 8(11):e81910.  https://doi.org/10.1371/journal.pone.0081910CrossRefPubMedPubMedCentralGoogle Scholar
  113. Spackman W, Ryan NJ, Rhoads CA, Given PH (1988) Studies of peat as the input to coalification II sampling sites and preliminary fractionation. Int J Coal Geol 9(3):253–265.  https://doi.org/10.1016/0166-5162(88)90016-XCrossRefGoogle Scholar
  114. SPE (Society of Petroleum Engineers) (1992) Coalbed methane. SPE reprint series, Issue 35. ISBN: 978-1555630430Google Scholar
  115. Speight JG (1983) The chemistry and technology of coal. In: Heinemann H (ed) Chemical industries, vol 12. Marcel Dekker Inc, New York. ISBN: 0-8247-1915-8 TP325.S714Google Scholar
  116. Stach E, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmüller R, Murchison DG (1982) Stach’s textbook of coal petrology, 3rd edn. http://www.schweizerbart.de. ISBN: 978-3-443-01018-8Google Scholar
  117. Stephen A, Adebusuyi A, Baldygin A, Shuster J, Southam G, Budwill K, Foght J, Nobes DS, Mitra SK (2014) Bioconversion of coal: new insights from a core flooding study. RSC Adv 4:22779–22791.  https://doi.org/10.1039/c4ra01628aCrossRefGoogle Scholar
  118. Strachan CR, Singh R, VanInsberghe D, Ierdokymenko K, Budwill K, Mohn WW, Eltis LD, Hallam SJ (2014) Metagenomic scaffolds enable combinatorial lignin transformation. PNAS 111(28):10143–10148.  https://doi.org/10.1073/pnas.1401631111CrossRefPubMedGoogle Scholar
  119. Stranges AA (1997) Coal – chemistry encyclopedia. http://www.chemistryexplained.com/Ce-Co/Coal.html. Last accessed 17 May 2017
  120. Stranges AN (2007) A history of the Fischer-Tropsch synthesis in Germany 1926–45. In: Davis BH, Occelli ML (eds) Studies in surface science and catalysis: Fischer-Tropsch synthesis, catalysts and catalysis. Elsevier. ISBN: 978-0-444-52221-4Google Scholar
  121. Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39:617–656.  https://doi.org/10.1146/annurev-earth-040610-133343CrossRefGoogle Scholar
  122. Swaine DJ (1990) Trace elements in coal. Butterworths. ISBN: 0-408-03309-6Google Scholar
  123. Swanhills Synfuels (2017) Gas manufacturing: overview. http://swanhills-synfuelscom/gas-manufacturing/overview/. Last accessed Aug 2017Google Scholar
  124. Tan B, Budwill K, Foght J (2014) Bioconversion and biomethanization of coal: an omics approach to bioprospecting for key microbes and genes (poster session abstracts for genomics: the power and the promise 2014). Genome 57:407. WOS:000345533100032Google Scholar
  125. Tang YQ, Ji P, Lai GL, Chi CQ, Liu ZS, Wu XL (2012) Diverse microbial community from the coalbeds of the Ordos Basin. China Int J Coal Geol 90–91:21–33.  https://doi.org/10.1016/j.coal.2011.09.009CrossRefGoogle Scholar
  126. Thomas L (2013) Coal geology, 2nd edn. Wiley. ISBN: 978-1119990444 [chapter 4]Google Scholar
  127. Tilley B, Muehlenbachs K (2013) Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem Geol 339:194–204.  https://doi.org/10.1016/j.chemgeo.2012.08.002CrossRefGoogle Scholar
  128. Tilley B, McLellan S, Hiebert S, Quartero B, Veilleux B, Muehlenbachs K (2011) Gas isotope reversals in fractured gas reservoirs of the western Canadian foothills: mature shale gases in disguise. AAPG Bull 95:1399–1422. http://archives.datapages.com/data/bulletns/2011/08aug/BLTN10103/BLTN10103.HTMCrossRefGoogle Scholar
  129. Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin. ISBN: 0-387-13281-3CrossRefGoogle Scholar
  130. Van Krevelen DW (1961) Coal: typology – physics – chemistry – constitution. Elsevier. ISBN: 978-0444406002Google Scholar
  131. Vick SHW, Tetu SG, Sherwood N, Pinetown K, Sestak S, Vallotton P, Elbourne LDH, Greenfield P, Johnson E, Barton D, Midgley DJ, Paulsen IT (2016) Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface. Int J Coal Geol 160:42–50.  https://doi.org/10.1016/j.coal.2016.04.012CrossRefGoogle Scholar
  132. Vinson DS, Blair NE, Martini AM, Larter S, Orem WH, McIntosh JC (2017) Microbial methane from in situ biodegradation of coal and shale: a review and reevaluation of hydrogen and carbon isotope signatures. Chem Geol 453:128–145.  https://doi.org/10.1016/j.chemgeo.2017.01.027CrossRefGoogle Scholar
  133. Vlad D (2010) Mudgases geochemistry and factors controlling their variability. University of Alberta thesis. https://era.library.ualberta.ca/files/z890rv49v/Vlad_Daniela_Spring%202010.pdf
  134. WCI (World Coal Institute) (2009) The coal resource: a comprehensive overview of coal. http://www.worldcoal.org/file_validate.php?file=coal_resource_overview_of_coal_report(03_06_2009).pdf
  135. Wei M, Yu Z, Zhang H (2013) Microbial diversity and abundance in a representative small-production coal mine of Central China. Energy Fuel 27:3821–3829.  https://doi.org/10.1021/ef400529fCrossRefGoogle Scholar
  136. Whiticar MJ (1990) A geochemical perspective of natural-gas and atmospheric methane. Org Geochem 16(1–3):531–547.  https://doi.org/10.1016/0146-6380(90)90068-BCrossRefGoogle Scholar
  137. Whiticar MJ (1993) Stable isotopes and global budgets. In: MAK K (ed) Atmospheric methane: sources, sinks, and role in global change. NATO ASI series (series I: global environmental change), vol 13. Springer, Berlin/Heidelberg. ISBN:978-3-642-84607-6.  https://doi.org/10.1007/978-3-642-84605-2_8CrossRefGoogle Scholar
  138. Whiticar MJ (1996) Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int J Coal Geol 32(1–4):191–215.  https://doi.org/10.1016/S0166-5162(96)00042-0CrossRefGoogle Scholar
  139. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314.  https://doi.org/10.1016/S0009-2541(99)00092-3CrossRefGoogle Scholar
  140. Wust RAJ, Bustin RM (2003) Opaline and Al-Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chem Geol 200(3–4):267–292.  https://doi.org/10.1016/S0009-2541(03)00196-7CrossRefGoogle Scholar
  141. Youngblood J, Wallance J, Port J, Cullen A, Faustman E (2014) Metagenomic applications for environmental health surveillance: a one health case study from the Pacific Northwest ecosystem. GRF Davos Planet@Risk Special Issue on One Health (Part II/II) 2(4):281–285. https://planet-risk.org/index.php/pr/article/view/106/233Google Scholar
  142. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. ecology, physiology, biochemistry and genetics. Chapman and Hall, New York, pp 128–206. http://www.springer.com/gp/book/9780412035319Google Scholar
  143. Zinder SH (1998) Methanogens. In: Burlage RS, Atlas RA, Stahl D, Geesey G, Saylor G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 113–134. ISBN: 978-0195092233Google Scholar
  144. Zuber MD (1998) Production characteristics and reservoir analysis of coalbed methane reservoirs. Int J Coal Geol 38:27–45.  https://doi.org/10.1016/S0166-5162(98)00031-7CrossRefGoogle Scholar
  145. Zumberge JE, Ferworn KA, Curtis JB (2009) Gas character anomalies found in highly productive shale gas wells. Geochim Cosmochim Acta 73:A1539. WOS:000267229903766CrossRefGoogle Scholar
  146. Zumberge J, Ferworn K, Brown S (2012) Isotopic reversal ('rollover') in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar Pet Geol 31(1):43–52.  https://doi.org/10.1016/j.marpetgeo.2011.06.009CrossRefGoogle Scholar

Copyright information

© Crown 2020

Authors and Affiliations

  1. 1.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  2. 2.Processing TechnologiesInnoTech AlbertaEdmontonCanada

Personalised recommendations