Advertisement

Hydrothermal Petroleum

  • Bernd R. T. Simoneit
Living reference work entry

Latest version View entry history

Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Hydrothermal petroleum formation is rapid and efficient in systems associated with tectonic spreading centers and high fluid transport. In these systems the conditions driving chemical reactions are high temperatures (~60 to >400 °C) and confining pressures (>150 bar) in an aqueous open flow medium. Organic matter alteration by reductive reactions to petroleum hydrocarbons proceeds generally from immature organic matter (also from entrained viable biota) instantaneously or over a brief geological time span (decades to millennia). These conditions are conducive to organic chemistry which yields concurrent products primarily from reduction (due to mineral buffering), to a lesser extent from oxidation (high thermal stress), and traces from synthesis reactions.

References

  1. Agirrezabala LM (2009) Mid-cretaceous hydrothermal vents and authigenic carbonates in a transform margin. Basque-Cantabrian Basin (western Pyrenees): a multidisciplinary study. Sedimentology 56:969–996CrossRefGoogle Scholar
  2. Anderson RB (1984) The Fischer-Tropsch reaction. Academic, LondonGoogle Scholar
  3. Andersson E, Simoneit BRT, Holm NG (2000) Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, Northeast Pacific Ocean. Appl Geochem 15:1169–1190PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ballard RD, Francheteau J, Juteau T, Rangan C, Normark W (1981) East Pacific Rise at 21°N: the volcanic, tectonic and hydrothermal processes of the central axis. Earth Planet Sci Lett 55:1–10CrossRefGoogle Scholar
  5. Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12:547–558CrossRefGoogle Scholar
  6. Berkowitz N, Calderon J (1990) Extraction of oil sand bitumens with supercritical water. Fuel Process Technol 25:33–44CrossRefGoogle Scholar
  7. Bischoff JL, Pitzer KS (1989) Liquid-vapor relations for the system NaCl- H2O: summary of the P-T-x surface from 300° to 500°C. Am J Sci 289:217–248CrossRefGoogle Scholar
  8. Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52:2121–2126CrossRefGoogle Scholar
  9. Blumer M (1975) Curtisite, idrialite and pendletonite, polycyclic aromatic hydrocarbon minerals: their composition and origin. Chem Geol 16:245–256CrossRefGoogle Scholar
  10. Blumer M (1976) Polycyclic aromatic compounds in nature. Sci Am 234:34–45CrossRefGoogle Scholar
  11. Brault M, Simoneit BRT (1988) Steroid and triterpenoid distributions in Bransfield Strait sediments: hydrothermally-enhanced diagenetic transformations. Org Geochem 13:697–705CrossRefGoogle Scholar
  12. Brault M, Simoneit BRT (1989) Trace petroliferous organic matter associated with hydrothermal minerals from the Mid-Atlantic Ridge at the Trans-Atlantic Geotraverse 26°N site. J Geophys Res 94:9791–9798CrossRefGoogle Scholar
  13. Brault M, Simoneit BRT (1990) Mild hydrothermal alteration of immature organic matter in sediments from the Bransfield Strait, Antarctica. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 149–158CrossRefGoogle Scholar
  14. Brault M, Simoneit BRT, Marty JC, Saliot A (1985) Les hydrocarbures dans le système hydrothermal de la ride Est-Pacifique, á 13°N. Competes Rendus Academie des Sciences, Paris 301(II): 807–812Google Scholar
  15. Brault M, Simoneit BRT, Marty JC, Saliot A (1988) Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N. Org Geochem 12: 209–219CrossRefGoogle Scholar
  16. Brault M, Simoneit BRT, Saliot A (1989) Trace petroliferous organic matter associated with massive hydrothermal sulfides from the East Pacific Rise at 13°N and 21°N. Oceanol Acta 12:405–415Google Scholar
  17. Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15CrossRefGoogle Scholar
  18. Carranza-Edwards A, Rosales-Hoz L, Aguayo-Camargo JE, Lozano-Santa Cruz R, Hornelas-Orozco Y (1990) Geochemical study of hydrothermal core sediments and rocks from the Guaymas Basin, Gulf of California. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 77–82CrossRefGoogle Scholar
  19. Charlou J, Donval J (1993) Hydrothermal methane venting between 12oN and 6oN along the Mid-Atlantic Ridge. J Geophys Res 98:9625–9642CrossRefGoogle Scholar
  20. Chen C-TA (1981) Geothermal systems at 21°N. Science 211:298PubMedCrossRefPubMedCentralGoogle Scholar
  21. Clifton CG, Walters CC, Simoneit BRT (1990) Hydrothermal petroleums from Yellowstone National Park, Wyoming, U.S.A. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 169–191CrossRefGoogle Scholar
  22. Connolly JF (1966) Solubility of hydrocarbons in water near the critical solution temperatures. J Chem Eng Data 11:13–16CrossRefGoogle Scholar
  23. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083PubMedCrossRefPubMedCentralGoogle Scholar
  24. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta SP:59–69Google Scholar
  25. Curray JR, Moore DG, Aguayo JE, Aubry MP, Einsele G, Fornari DJ, Gieskes J, Guerrero BC, Kastner M, Kelts K, Lyle M, Matoba Y, Molina-Cruz A, Niemitz J, Rueda J, Saunders AD, Schrader H, Simoneit BRT, Vacquier V (1982) Initial reports of the Deep Sea drilling project, vol 64, Parts I and II. U.S. Government Printing Office, Washington, DC. 1314ppCrossRefGoogle Scholar
  26. Czochanska Z, Sheppard CM, Weston RJ, Woolhouse AD, Cook RA (1986) Organic geochemistry of sediments in New Zealand, Part I. A biomarker study of the petroleum seepage at the geothermal region of Waiotapu. Geochim Cosmochim Acta 50:507–515CrossRefGoogle Scholar
  27. Davis E, Mottl M, Fisher A, Baker PA, Becker K, Boni M, Boulègue J, Brunner CA, Duckworth RC, Franklin JM, Goodfellow WD, Gröschel-Becker HM, Kinoshita M, Konyukhov BA, Körner U, Drasnov SG, Langseth M, Mao S, Marchig V, Marumo K, Oda H, Rigsby CA, BRT S, Stakes DS, Wheat CG, Whelan J, Villinger HW, Zierenberg RA, (Shipboard Scientific Party) (1992) Proceedings of the ocean drilling program, Initial reports, vol 139. Ocean Drilling Program, College Station. 1026ppGoogle Scholar
  28. Didyk BM, Simoneit BRT (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature 342:65–69CrossRefGoogle Scholar
  29. Didyk BM, Simoneit BRT (1990) Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 29–40CrossRefGoogle Scholar
  30. Diels O, Rickert HF (1935) Ȕber den Identitäts-Nachweis des Dehydrierungs-Kohlenwasserstoffes C18H16 aus Sterinen und Geninen mit γ-Methylcyclopentenophenanthren. Ber Chem Ges 68:267–272CrossRefGoogle Scholar
  31. Diels O, Gädke W, Körding P (1927) Ȕber die Dehydrierung des Cholesterins. Liebigs Ann Chem 459:1–26CrossRefGoogle Scholar
  32. Einsele G (1985) Basaltic sill-sediment complexes in young spreading centers: genesis and significance. Geology 13:249–252CrossRefGoogle Scholar
  33. Einsele G, Gieskes J, Curray J, Moore D, Aguayo E, Aubry MO, Fornari DJ, Guerrero JC, Kastner M, Kelts K, Lyle M, Matoba Y, Molina-Cruz A, Niemitz J, Rueda J, Saunders A, Schrader H, Simoneit BRT, Vacquier V (1980) Intrusion of basaltic sills into highly porous sediments and resulting hydrothermal activity. Nature 283:441–445CrossRefGoogle Scholar
  34. Fischer F (1935) Die Synthese der Treibstoffe (Kogasin) und Schmieröle aus Kohlenoxyd und Wasserstoff bei gewöhnlichem Druck. Brennstoff-Chem 16:1–11Google Scholar
  35. Fouquet Y, Zierenberg RA, Miller DJ, Bahr JM, Baker PA, Bjerkgården T, Brunner CA, Duckworth RC, Gable R, Gieskes J, Goodfellow WD, Gröschel-Becker HM, Guèrin G, Ishibashi J, Iturrino G, James RH, Lackschewitz KS, Marquez LL, Nehlig P, Peter JM, Rigsby CA, Simoneit BRT, Schultheiss P, Shanks WC, Summit M, Teagle DAH, Urbat M, Zuffa GG (1998) Proceedings of the ocean drilling program, Initial reports, vol 169. Texas A & M University, College Station. 592 ppGoogle Scholar
  36. Galimov EM, Simoneit BRT (1982a) Geochemistry of interstitial gases in sedimentary deposits of the Gulf of California, Leg 64. In: Curray JR, Moore DG et al (eds) Initial reports of the Deep Sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 781–788Google Scholar
  37. Galimov EM, Simoneit BRT (1982b) Variations in the carbon isotope compositions of CH4 and CO2 in the sedimentary sections of Guaymas Basin (Gulf of California). Geokhimiya Acad Nauk SSSR 7:1027–1034Google Scholar
  38. Geissman TA, Sim KY, Murdoch J (1967) Organic minerals. Picene and chrysene as constituents of the mineral curtisite (idrialite). Experientia 23:793–794CrossRefGoogle Scholar
  39. Geptner AR, Richter B, Pikovskii YI, Chernyansky SS, Alekseeva TA (2006) Hydrothermal polycyclic aromatic hydrocarbons in marine and lagoon sediments at the intersection between Tjörnes Fracture Zone and recent rift zone (Skjálfandi and Öxarfjördur bays), Iceland. Mar Chem 101:153–165CrossRefGoogle Scholar
  40. Gieskes JM, Simoneit BRT, Brown T, Shaw T, Wang YC, Magenheim A (1988) Hydrothermal fluids and petroleum in surface sediments of Guaymas Basin, Gulf of California: a case study. Can Mineral 26:589–602Google Scholar
  41. Gieskes JM, Simoneit BRT, Goodfellow WD, James RH, Baker PA, Ishibashi J (2002a) Geochemistry of fluid phases and sediments: relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169. Appl Geochem 17:1381–1399CrossRefGoogle Scholar
  42. Gieskes JM, Simoneit BRT, Goodfellow WD, Baker PA, Mahn C (2002b) Hydrothermal geochemistry of sediments and pore waters in Escanaba trough – ODP Leg 169. Appl Geochem 17:1435–1456CrossRefGoogle Scholar
  43. Gürgey K, Simoneit BRT, Bati Z, Karamanderesi IH, Varol B (2007) Origin of petroliferous bitumen from the Büyük Menendes-Gediz geothermal graben system, Denizli-Sarayköy, western Turkey. Appl Geochem 22:1393–1415CrossRefGoogle Scholar
  44. Hartmann M (1980) Atlantis II deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965. Deep-Sea Res 27:161–171CrossRefGoogle Scholar
  45. Hékinian R, Fevrier M, Avedik F, Cambon P, Charlou JL, Needham HD, Raillard J, Boulègue J, Merlivat L, Moinet A, Manganini S, Lange J (1983) East Pacific Rise near 13°N: geology of new hydrothermal fields. Science 219:1321–1324PubMedCrossRefPubMedCentralGoogle Scholar
  46. Holm NG (ed) (1992) Marine hydrothermal systems and the origin of life. Orig Life Evol Biosp 22:1–242Google Scholar
  47. Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman and Company, New York. 743 ppGoogle Scholar
  48. Jenden PD, Simoneit BRT, Philp RP (1982) Hydrothermal effects on protokerogen of unconsolidated sediments from Guaymas Basin, Gulf of California, elemental compositions, stable carbon isotope ratios and electron spin resonance spectra. In: Curray JR, Moore DG et al (eds) Initial reports of the Deep Sea drilling project, vol 64. U. S. Government Printing Office, Washington, DC, pp 905–912Google Scholar
  49. Jin Q, Xiong S-S, Lu P (1999) Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, eastern China. Appl Geochem 14:547–558CrossRefGoogle Scholar
  50. Jones ML (ed) (1985) Hydrothermal vents of the eastern Pacific: an overview. Biol Soc Wash Bull 6:1–547Google Scholar
  51. Josephson J (1982) Supercritical fluids. Environ Sci Technol 16:548A–551ACrossRefGoogle Scholar
  52. Kashirtsev VA, Kontorovich AE, Ivanov VL, Safronov AF (2010) Natural bitumen fields in the northeast of the Siberian platform (Russian Arctic sector). Russ Geol Geophys 51:72–82CrossRefGoogle Scholar
  53. Kawka OE, Simoneit BRT (1987) Survey of hydrothermally-generated petroleums from the Guaymas Basin spreading center. Org Geochem 11:311–328CrossRefGoogle Scholar
  54. Kawka OE, Simoneit BRT (1990) Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 17–27CrossRefGoogle Scholar
  55. Kawka OE, Simoneit BRT (1994) Hydrothermal pyrolysis of organic matter in Guaymas petroleums. Org Geochem 22:947–978CrossRefGoogle Scholar
  56. Koski RA, Lonsdale PF, Shanks WC, Berndt ME, Howe SS (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J Geophys Res 90:6695–6707CrossRefGoogle Scholar
  57. Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger ST, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna and carbonates. Science 231:561–566PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kvenvolden KA (1966) Molecular distributions of normal fatty acids and paraffins in some lower cretaceous sediments. Nature 209:573–577CrossRefGoogle Scholar
  59. Kvenvolden KA, Simoneit BRT (1990) Hydrothermally derived petroleum: examples from Guaymas Basin, Gulf of California and Escanaba Trough, Northeast Pacific. Am Assoc Pet Geol Bull 74:223–237Google Scholar
  60. Kvenvolden KA, Rapp JB, Hostettler FD, Morton JL, King JD, Claypool GE (1986) Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge. Science 234:1231–1234PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kvenvolden KA, Rapp JB, Hostettler FD (1990) Hydrocarbon geochemistry of hydrothermally-generated petroleum from Escanaba Trough, offshore California. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 83–91Google Scholar
  62. Lanza-Espino G, Soto LA (1999) Sedimentary geochemistry of hydrothermal vents in Guaymas Basin, Gulf of California, Mexico. Appl Geochem 14:499–510CrossRefGoogle Scholar
  63. Leif RN, Simoneit BRT, Kvenvolden KA (1992) Hydrous pyrolysis of n-C32H66 in the presence and absence of inorganic components. Am Chem Soc Div Fuel Chem 204th Nat Meet Prepr 37(4):1748–1753Google Scholar
  64. Little CTS, Herrington RJ, Masglennikov VV, Morris NJ, Zaykov VV (1997) Silurian hydrothermal-vent community from the southern Urals, Russia. Nature 385:146–148CrossRefGoogle Scholar
  65. Lonsdale P (1985) A transform continental margin rich in hydrocarbons, Gulf of California. Am Assoc Pet Geol Bull 69:1160–1180Google Scholar
  66. Markhinin EK, Podkletnov NE (1977) The phenomenon of formation of prebiological compounds in volcanic processes. Orig Life 8(3):225–235PubMedCrossRefPubMedCentralGoogle Scholar
  67. McCollom TM, Simoneit BRT, Shock EL (1999a) Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum. Energy Fuels 13:401–410PubMedCrossRefPubMedCentralGoogle Scholar
  68. McCollom TM, Ritter G, Simoneit BRT (1999b) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:157–166Google Scholar
  69. Merewether R, Olsson MS, Lonsdale P (1985) Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. J Geophys Res 90:3075–3085CrossRefGoogle Scholar
  70. Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 103–114CrossRefGoogle Scholar
  71. Parnell J (1988) Metal enrichments in solid bitumens: a review. Mineral Deposita 23:191–199CrossRefGoogle Scholar
  72. Parnell J (1993) Paragenesis of bitumens and ore in mineral deposits. Resour Geol Special Issue 15:111–122Google Scholar
  73. Peckmann J, Little CTS, Gill F, Reitner J (2005) Worm tube fossils from Hollard Mound hydrocarbon-seep deposit, Middle Devanian, Morocco: Palaeozoic seep-related vestementiferans? Palaeogeogr, Palaeoclimatol, Palaeoecol 227:242–257CrossRefGoogle Scholar
  74. Peng X-T, Li J-W, Zhou H-Y, Wu Z-J, Li J-T, Chen S, Yao H-Q (2011) Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields in the Central Indian and Mid-Atlantic Ridges. J Asian Earth Sci 41:355–368CrossRefGoogle Scholar
  75. Peter JM, Simoneit BRT, Kawka OE, Scott SD (1990) Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas Basin. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 51–63Google Scholar
  76. Peter JM, Peltonen P, Scott SD, Simoneit BRT, Kawka OE (1991) Carbon-14 ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California – implications for oil generation, expulsion and migration. Geology 19:253–256CrossRefGoogle Scholar
  77. Pikovskii YI, Chernova TG, Alekseeva TA, Kozin IS (1996) New data on the composition of polycyclic aromatic hydrocarbons in sulfides and bottom sediments of the Guaymas Basin (Gulf of California). Geochem Int 34:408–415Google Scholar
  78. Pikovskii YI, Chernova TG, Alekseeva TA, Verkhovskaya ZI (2004) Composition and nature of hydrocarbons in modern serpentinization areas in the ocean. Geochem Int 42:971–976Google Scholar
  79. Pitzer KS (1986) Large-scale fluctuations and the critical behavior of dilute NaCl in H2O. J Phys Chem 90:1502–1504CrossRefGoogle Scholar
  80. Price LC (1993) Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim Cosmochim Acta 57:3261–3280CrossRefGoogle Scholar
  81. Price LC, Wenger LM, Ging T, Bount CW (1983) Solubility of crude oil in methane as a function of pressure and temperature. Org Geochem 4:201–221CrossRefGoogle Scholar
  82. Rasmussen B, Buick R (2000) Old oily ores: evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulfide deposit. Geology 28:731–734CrossRefGoogle Scholar
  83. Rokosova NN, Rokosov YV, Uskov SI, Bodoev NV (2001) Composition and formation of hydrothermal petroleum (a review). Neftechimia 41:3–16Google Scholar
  84. Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth-Sci Rev 20:1–104CrossRefGoogle Scholar
  85. Rona PA (1988) Hydrothermal mineralization at oceanic ridges. Can Mineral 26:431–465Google Scholar
  86. Rona PA (2003) Resources of the Sea Floor. Science 299:673–674PubMedCrossRefPubMedCentralGoogle Scholar
  87. Rona PA (2008) The changing vision of marine minerals. Ore Geol Rev 33:618–666CrossRefGoogle Scholar
  88. Rona PA, Scott SD (1993) Preface to special issue on sea-floor hydrothermal mineralization: new perspectives. Econ Geol 88:1933–1976Google Scholar
  89. Rona PA, Thompson G, Mottl MJ, Karson JA, Jenkins WJ, Graham D, Mallette M, Von Damm K, Edmond JM (1984) Hydrothermal activity at the Trans-Atlantic Geotraverse hydrothermal field, Mid-Atlantic Ridge Crest at 26°N. J Geophys Res 89:11365–11377CrossRefGoogle Scholar
  90. Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100-400°C. Orig Life Evol Biosph 31:103–118PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rushdi A, Simoneit BRT (2002a) Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part 1. Middle Valley, Juan de Fuca Ridge. Appl Geochem 17:1401–1428CrossRefGoogle Scholar
  92. Rushdi A, Simoneit BRT (2002b) Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part 2. Escanaba Trough, Gorda Ridge. Appl Geochem 17: 1467–1494CrossRefGoogle Scholar
  93. Rushdi AI, Simoneit BRT (2004) Condensation reactions and formation of amides, esters and nitriles under hydrothermal conditions. Astrobiology 4:211–224PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sakai H, Gamo T, Kim E-S, Tsutsumi M, Tanaka T, Ishibashi J, Wakita H, Yamano M, Oomori T (1990) Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin. Science 248:1093–1096PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sander SG, Koschinsky A (2011) Metal flux from hydrothermal vents increased by organic complexation. Nat Geosci 4:145–150CrossRefGoogle Scholar
  96. Sanders ND (1986) Visual observation of the solubility of heavy hydrocarbons in near-critical water. Ind Eng Chem Fundam 25:169–171CrossRefGoogle Scholar
  97. Scott LT (1982) Thermal rearrangements of aromatic compounds. Acc Chem Res 15:52–58CrossRefGoogle Scholar
  98. Scott SD (1985) Seafloor polymetallic sulfide deposits: modern and ancient. Mar Min 5:191–212Google Scholar
  99. Shaw RW, Brill TB, Clifford AA, Eckert CE, Franck EU (1991) Supercritical water, a medium for chemistry. Chem Eng News Dec 23:26–38Google Scholar
  100. Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524PubMedCrossRefPubMedCentralGoogle Scholar
  101. Shock EL (1990) Chemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph 20:331–367CrossRefGoogle Scholar
  102. Simoneit BRT (1977) Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim Cosmochim Acta 41:463–476CrossRefGoogle Scholar
  103. Simoneit BRT (1978) The organic chemistry of marine sediments. In: Riley JP, Chester R (eds) Chemical oceanography, vol 7. Academic, London, pp 233–311Google Scholar
  104. Simoneit BRT (1982a) The composition, source and transport of organic matter to marine sediments – the organic geochemical approach. In: Thompson JAJ, Jamieson WD (eds) Proceedings of the symposium marine chemistry into the eighties. National Research Council of Canada, Victoria, B.C. pp 82–112Google Scholar
  105. Simoneit BRT (1982b) Shipboard organic geochemistry and safety monitoring, Leg 64, Gulf of California. In: Curray JR, Moore DG et al (eds) Initial reports of the Deep Sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 723–728Google Scholar
  106. Simoneit BRT (1983a) Organic matter maturation and petroleum genesis: geothermal versus hydrothermal. In: The role of heat in the development of energy and mineral resources in the Northern Basin and Range Province, Geothermal Research Council, Davis, California, Special Report vol. 13, pp 215–241Google Scholar
  107. Simoneit BRT (1983b) Effects of hydrothermal activity on sedimentary organic matter: Guaymas Basin, Gulf of California – petroleum genesis and protokerogen degradation. In: Rona PA, Bostöm K, Laubier L, Smith KL Jr (eds) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, pp 451–471CrossRefGoogle Scholar
  108. Simoneit BRT (1984) Hydrothermal effects on organic matter – high versus low temperature components. Org Geochem 6:857–864CrossRefGoogle Scholar
  109. Simoneit BRT (1985a) Hydrothermal petroleum: genesis, migration and deposition in Guaymas Basin, Gulf of California. Can J Earth Sci 22:1919–1929CrossRefGoogle Scholar
  110. Simoneit BRT (1985b) Hydrothermal petroleum: composition and utility as a biogenic carbon source. Biol Soc Wash Bull 6:49–56Google Scholar
  111. Simoneit BRT (1988) Petroleum generation in submarine hydrothermal systems – an update. Can Mineral 26:827–840Google Scholar
  112. Simoneit BRT (1990) Hydrothermal petroleum generation from immature organic matter – implications to the oceanic carbon cycle. In: Ittekot V, Kemp S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Berlin, pp 365–387CrossRefGoogle Scholar
  113. Simoneit BRT (1992) Aqueous organic geochemistry at high temperature/high pressure, Holm NG (ed) Orig Life Evol Biosph 22: 43–65Google Scholar
  114. Simoneit BRT (1993) Hydrothermal alteration of organic matter in marine and terrestrial systems. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 397–418CrossRefGoogle Scholar
  115. Simoneit BRT (1994) Lipid/bitumen maturation by hydrothermal activity in sediments of Middle Valley, Leg 139. In: Mottl M, David E, Fisher A, Slack J (eds) Proceedings of the ocean drilling program, scientific results, vol 139. Ocean Drilling Program, College Station, pp 447–465Google Scholar
  116. Simoneit BRT (1995) Evidence for organic synthesis in high temperature aqueous media – facts and prognosis. Orig Life Evol Biosph 25:119–140PubMedCrossRefPubMedCentralGoogle Scholar
  117. Simoneit BRT (2000a) Submarine and continental hydrothermal systems – a review of organic matter alteration and migration processes, and comparison with conventional sedimentary basins. In: Giordano TH, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Reviews in economic geology, vol 9. pp 193–215Google Scholar
  118. Simoneit BRT (2000b) Alteration and migration processes of organic matter in hydrothermal systems and implications for metallogenesis. In: Glikson M, Mastalerz M (eds) Organic matter and mineralization: thermal alteration, hydrocarbon generation and role in metallogenesis. Kluwer Academic Publishers, Dordrecht, pp 13–37CrossRefGoogle Scholar
  119. Simoneit BRT (2003) Petroleum generation, extraction and migration and abiogenic synthesis in hydrothermal systems. In: Ikan R (ed) Natural and laboratory-simulated thermal geochemical processes. Kluwer Academic Publishers, Dordrecht, pp 1–30Google Scholar
  120. Simoneit BRT, Fetzer JC (1996) High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org Geochem 24:1065–1077PubMedCrossRefPubMedCentralGoogle Scholar
  121. Simoneit BRT, Galimov EM (1984) Geochemistry of interstitial gases in quaternary sediments of the Gulf of California. Chem Geol 43:151–166CrossRefGoogle Scholar
  122. Simoneit BRT, Kawka OE (1987) Hydrothermal petroleum from diatomites in the Gulf of California. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geological society of London special publication, vol 26. pp 217–228CrossRefGoogle Scholar
  123. Simoneit BRT, Kvenvolden KA (1994) Comparison of 14C ages of hydrothermal petroleums. Org Geochem 21:525–529CrossRefGoogle Scholar
  124. Simoneit BRT, Lonsdale PF (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295:198–202CrossRefGoogle Scholar
  125. Simoneit BRT, Philp RP (1982) Organic geochemistry of lipids and kerogen and the effects of basalt intrusions on unconsolidated oceanic sediments: sites 477, 478 and 481, Guaymas Basin, Gulf of California. In: Curray JR, Moore DG et al (eds) Initial reports of the Deep Sea drilling project, vol 64. U.S. Government Printing Office, Washington DC, pp 883–904Google Scholar
  126. Simoneit BRT, Brenner S, Peters KE, Kaplan IR (1978) Thermal alteration of cretaceous black shale by basaltic intrusions in the Eastern Atlantic. Nature 273:501–504CrossRefGoogle Scholar
  127. Simoneit BRT, Mazurek MA, Brenner S, Crisp PT, Kaplan IR (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep-Sea Res 26A:879–891CrossRefGoogle Scholar
  128. Simoneit BRT, Brenner S, Peters KE, Kaplan IR (1981) Thermal alteration of cretaceous black shale by basaltic intrusions in the eastern Atlantic. II: effects on bitumen and kerogen. Geochim Cosmochim Acta 45:1581–1602CrossRefGoogle Scholar
  129. Simoneit BRT, Philp RP, Jenden PD, Galimov EM (1984) Organic geochemistry of Deep Sea drilling project sediments from the Gulf of California – hydrothermal effects on unconsolidated diatom ooze. Org Geochem 7:173–205CrossRefGoogle Scholar
  130. Simoneit BRT, Grimalt JO, Hayes JM, Hartman H (1987) Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea. Geochim Cosmochim Acta 51:879–894PubMedCrossRefPubMedCentralGoogle Scholar
  131. Simoneit BRT, Kawka OE, Brault M (1988) Origin of gases and condensates in the Guaymas Basin hydrothermal system. In: Schoell M (ed) Origins of methane in the earth. Chemical geology, vol 71. pp 169–182Google Scholar
  132. Simoneit BRT, Brault M, Saliot A (1990a) Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 115–124CrossRefGoogle Scholar
  133. Simoneit BRT, Lonsdale PF, Edmond JM, Shanks III WC (1990b) Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. In: Simoneit BRT (ed) Organic matter alteration in hydrothermal systems – petroleum generation, migration and biogeochemistry. Applied Geochemistry, Elsvier, Amsterdam, vol 5. pp 41–49CrossRefGoogle Scholar
  134. Simoneit BRT, Goodfellow WD, Franklin JM (1992a) Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, Northern Juan de Fuca Ridge. Appl Geochem 7:257–264CrossRefGoogle Scholar
  135. Simoneit BRT, Kawka OE, Wang G-M (1992b) Biomarker maturation in contemporary hydrothermal systems, alteration of immature organic matter in zero geological time. In: Moldowan J, Philp RP, Albrecht P (eds) Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs, pp 124–141Google Scholar
  136. Simoneit BRT, Summons RE, Jahnke LL (1998) Biomarkers as tracers for life on early Earth and Mars. Orig Life Evol Biosp 28:475–483CrossRefGoogle Scholar
  137. Simoneit BRT, Aboul-Kassim TAT, Tiercelin J-J (2000) Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Appl Geochem 15:355–368PubMedCrossRefPubMedCentralGoogle Scholar
  138. Simoneit BRT, Deamer DW, Kompanichenko V (2009) Characterization of hydrothermally generated oil from the Uzon Caldera, Kamchatka. Appl Geochem 24:303–309CrossRefGoogle Scholar
  139. Siskin M, Katritzky AR (1991) Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  140. Spiess FN, Macdonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diazgarcia VM, Francheteau J, Guerrero J, Hawkins J, Haymon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdougall JD, Miller S, Normark W, Orcutt J, Rangin C (1980) East Pacific Rise; hot springs and geophysical experiments. Science 207:1421–1433PubMedCrossRefPubMedCentralGoogle Scholar
  141. Svensen H, Karlsen DA, Sturz A, Backer-Owe K, Banks DA, Planke S (2007) Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA. Geology 35:85–88CrossRefGoogle Scholar
  142. Szatmari P (1989) Petroleum formation by Fischer-Tropsch synthesis in plate tectonics. Am Assoc Pet Geol Bull 73:989–998Google Scholar
  143. Thompson G, Humphris SE, Schroeder B, Sulanowska M, Rona PA (1988) Hydrothermal mineralization on the Mid-Atlantic Ridge. Can Mineral 26:697–711Google Scholar
  144. Tiercelin J-J, Thourin C, Kalala T, Mondegeur A (1989) Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift. Geology 17:1053–1056CrossRefGoogle Scholar
  145. Tiercelin J-J, Boulègue J, Simoneit BRT (1993) Hydrocarbon, sulphide and carbonate deposits related to sublacustrine hydrothermal seeps in the North Tanganyika Trough, East African Rift. In: Parnell J et al (eds) Bitumens in Ore deposits. Springer, Berlin, pp 96–113CrossRefGoogle Scholar
  146. Tissot BP, Welte DH (1984) Petroleum formation and occurrence: a new approach to oil and gas exploration, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  147. Tödheide K (1982) Hydrothermal solutions. Ber Bunsenges Phys Chem 89:1005–1016CrossRefGoogle Scholar
  148. Venkatesan MI, Kaplan IR (1987) The lipid geochemistry of Antarctic marine sediments: Bransfield Strait. Mar Chem 21:347–375CrossRefGoogle Scholar
  149. Venkatesan MI, Ruth E, Rao PS, Nath BN, Rao BR (2003) Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Appl Geochem 18:845–861CrossRefGoogle Scholar
  150. Ventura GT, Simoneit BRT, Nelson RK, Reddy CM (2012) The composition, origin and fate of complex mixtures in the maltene fractions of hydrothermal petroleum assessed by comprehensive two-dimensional gas chromatography. Org Geochem 45:48–65CrossRefGoogle Scholar
  151. Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems. Geophysical monograph, vol 91. pp 222–247Google Scholar
  152. Welhan JA, Lupton JE (1987) Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin. Am Assoc Pet Geol Bull 71:215–223Google Scholar
  153. Whelan JK, Hunt JM (1982) C1–C8 in Leg 64 sediments, Gulf of California. In: Curray JR, Moore DG et al (eds) Initial reports of the Deep Sea drilling project, vol 64. U.S. Government Printing Office, Washington, DC, pp 763–779Google Scholar
  154. Whelan JK, Simoneit BRT, Tarafa M (1988) C1-C8 hydrocarbons in sediments from Guaymas Basin, Gulf of California – comparison to Peru Margin, Japan Trench and California Borderlands. Org Geochem 12:171–194CrossRefGoogle Scholar
  155. Whiticar MJ, Suess E, Wehner H (1985) Thermogenic hydrocarbons in surface sediments of the Bransfield Strait, Antarctic Peninsula. Nature 314:87–90CrossRefGoogle Scholar
  156. Yamanaka T, Ishibashi J, Hashimoto J (2000) Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org Geochem 31: 1117–1132CrossRefGoogle Scholar
  157. Zárate PF, Simoneit BRT (2005) Hydrothermal bitumen generated from sedimentary organic matter of rift lakes – Lake Chapala, Citala Rift, western Mexico. Appl Geochem 20:2343–2350CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BRT Simoneit, Department of ChemistryCollege of Science, Oregon State UniversityCorvallisUSA

Personalised recommendations