Lipids of Geochemical Interest in Microalgae

  • John K. VolkmanEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Microalgae have a long geological history and a diversity of biochemical constituents which vary systematically between algal classes. This review provides an update on those lipid constituents that have proven useful in organic geochemical studies as biomarkers for assigning sources of organic matter in seawater and sediments. These functionalized biomarkers are degraded in sediments by well-established pathways ultimately yielding hydrocarbons which can also be used to assign organic matter sources in ancient sediments and crude oils. Compound classes covered here include hydrocarbons, fatty acids, hydroxy fatty acids, fatty alcohols, alkyl diols, alkenones, alkenoates, and sterols. Information on biopolymeric substances called algaenans found in just a few algal classes is also provided.


  1. Achitouv E, Metzger P, Rager M-N, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65:3159–3165PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankter fatty acids. J Fish Res Bd Canada 25:1603–1620CrossRefGoogle Scholar
  3. Ahmed F, Zhou WX, Schenk PM (2015) Pavlova lutheri is a high-level producer of phytosterols. Algal Res Biomass Biofuels Bioprods 10:210–217Google Scholar
  4. Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380PubMedCrossRefPubMedCentralGoogle Scholar
  5. Allard B, Templier J (2001) High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry 57:459–467PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allard WG, Belt ST, Massé G, Naumann R, Robert J-M, Rowland S (2001) Tetra-unsaturated sesterterpenoids (Haslenes) from Haslea ostrearia and related species. Phytochemistry 56:795–800PubMedCrossRefPubMedCentralGoogle Scholar
  7. Balzano S, Villanueva L, de Bar M, Sinninghe Damsté JS, Schouten S (2017) Impact of culturing conditions on the abundance and composition of long chain alkyl diols in species of the genus Nannochloropsis. Org Geochem 108:9–17CrossRefGoogle Scholar
  8. Beastall GH, Tyndall AM, Rees HH, Goodwin TW (1974) Sterols in Porphyridium series. 4α-Methyl-5α-cholesta-8,22-dien-3β-ol and 4α,24-dimethyl-5α-cholesta-8,22-dien-3β-ol: two novel sterols from Porphyridium cruentum. Eur J Biochem 41:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  9. Belt ST, Cooke DA, Robert J-M, Rowland S (1996) Structural characterisation of widespread polyunsaturated isoprenoid biomarkers: a C25 triene, tetraene and pentaene from the diatom Haslea ostrearia Simonsen. Tetrahedron Lett 37:4755–4758CrossRefGoogle Scholar
  10. Belt ST, Allard G, Massé G, Robert J-M, Rowland S (2000a) Important sedimentary sesterterpenoids from the diatom Pleurosigma intermedium. Chem Comm 6:501–502CrossRefGoogle Scholar
  11. Belt ST, Allard WG, Rintatalo J, Johns LA, van Duin ACT, Rowland SJ (2000b) Clay and acid catalysed isomerisation and cyclisation reactions of highly branched isoprenoid (HBI) alkenes: implications for sedimentary reactions and distributions. Geochim Cosmochim Acta 64:3337–3345CrossRefGoogle Scholar
  12. Belt ST, Allard WG, Johns L, Konig WA, Massé G, Robert J-M, Rowland S (2001a) Variable stereochemistry in highly branched isoprenoids from diatoms. Chirality 13:415–419PubMedCrossRefPubMedCentralGoogle Scholar
  13. Belt ST, Allard WG, Massé G, Robert J-M, Rowland SJ (2001b) Structural characterisation of C30 highly branched isoprenoid alkenes (rhizenes) in the marine diatom Rhizosolenia setigera. Tetrahedron Lett 42:5583–5585CrossRefGoogle Scholar
  14. Belt ST, Massé G, Allard WG, Robert J-M, Rowland SJ (2001c) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275CrossRefGoogle Scholar
  15. Belt ST, Massé G, Allard WG, Robert J-M, Rowland SJ (2001d) Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis. Org Geochem 32:1169–1172CrossRefGoogle Scholar
  16. Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2002) Effects of auxosporulation on distributions of C25 and C30 isoprenoid alkenes in Rhizosolenia setigera. Phytochemistry 59:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  17. Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2003) Novel monocyclic sester- and triterpenoids from the marine diatom, Rhizosolenia setigera. Tetrahedron Lett 44:9103–9106CrossRefGoogle Scholar
  18. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27CrossRefGoogle Scholar
  19. Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25CrossRefGoogle Scholar
  20. Belt ST, Smik L, Brown TA, Kim J-H, Rowland SJ, Allen CS, Gal J-K, Shin K-H, Lee JI, Taylor KWR (2016) Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25. Nature Comms 7:12655. Scholar
  21. Belt ST, Brown TA, Smik L, Tatarek A, Wiktor J, Stowasser G, Assmy P, Allen C, Husum K (2017) Identification of C25 highly branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and sub-polar marine phytoplankton. Org Geochem 110:65–72CrossRefGoogle Scholar
  22. Bendif EM, Probert I, Schroeder DC, de Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776CrossRefGoogle Scholar
  23. Bengtson S, Sallstedt T, Belivanoval V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol.
  24. Berkaloff C, Casadevall E, Largeau C, Metzger P, Peracca S, Virlet J (1983) Hydrocarbon formation in the green alga Botryococcus braunii. 3. The resistant polymer of the walls of the hydrocarbon-rich alga Botryococcus braunii. Phytochemistry 22:389–397CrossRefGoogle Scholar
  25. Bertheas O, Metzger P, Largeau C (1999) A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L race). Phytochemistry 50:85–96CrossRefGoogle Scholar
  26. Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, PrincetonCrossRefGoogle Scholar
  27. Blokker P, Schouten S, van den Ende H, de Leeuw JW, Sinninghe Damsté JS (1998a) Cell wall-specific ω-hydroxy fatty acids in some freshwater green microalgae. Phytochemistry 49:691–695CrossRefGoogle Scholar
  28. Blokker P, Schouten S, van den Ende H, de Leeuw JW, Hatcher PG, Sinninghe Damsté JS (1998b) Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Org Geochem 29:1453–1468CrossRefGoogle Scholar
  29. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  30. Brassell SC (2014) Climatic influences on the Paleogene evolution of alkenones. Paleoceanography 29:255–272CrossRefGoogle Scholar
  31. Briggs DEG, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36:482–490PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870PubMedCrossRefPubMedCentralGoogle Scholar
  33. Brown AC, Knights PA, Conway E (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547CrossRefGoogle Scholar
  34. Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nature Comms 5:Article 4197.
  35. Chivall D, M’Boule D, Sinke-Schoen D, Sinninghe Damsté JS, Schouten S, van der Meer MT (2014) Impact of salinity and growth phase on alkenone distributions in coastal haptophytes. Org Geochem 67:31–34CrossRefGoogle Scholar
  36. Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 351–377Google Scholar
  37. Conte MH, Thompson A, Eglinton G, Green JC (1995) Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and the related species Gephyrocapsa oceanica. J Phycol 31:272–282CrossRefGoogle Scholar
  38. Conte MH, Thompson A, Lesley D, Harris RP (1998) Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim Cosmochim Acta 62:51–68CrossRefGoogle Scholar
  39. Coolen MJL, Muyzer G, Rijpstra WIC, Schouten S, Volkman JK, Sinninghe Damsté JS (2004) Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic Lake. Earth Planet Sci Lett 223:225–239CrossRefGoogle Scholar
  40. Cranwell PA, Creighton ME, Jaworski GHM (1988) Lipids of four species of freshwater chrysophytes. Phytochemistry 27:1053–1059CrossRefGoogle Scholar
  41. Cranwell PA, Jaworski GHM, Bickley HM (1990) Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151CrossRefGoogle Scholar
  42. De Bar MW, Dorhout DJC, Hopmans EC, Rampen SW, Sinninghe Damsté JS, Schouten S (2016) Constraints on the application of long chain diol proxies in the Iberian Atlantic margin. Org Geochem 101:184–195CrossRefGoogle Scholar
  43. D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev 58:832–841CrossRefGoogle Scholar
  44. D’Andrea WJ, Huang Y (2005) Long chain alkenones in Greenland lake sediments: Low δ13C values and exceptional abundance. Org Geochem 36:1234–1241CrossRefGoogle Scholar
  45. D’Andrea WJ, Lage M, Martiny JBH, Laatsch AD, Amaral-Zettler LA, Sogin ML, Huang YS (2006) Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. J Geophys Res Biogeosci 111(G3).
  46. D’Andrea WJ, Theroux S, Bradley RS, Huang XH (2016) Does phylogeny control \( {U}_{37}^K \) temperature sensitivity? Implications for lacustrine alkenone paleothermometry. Geochim Cosmochim Acta 175:168–180CrossRefGoogle Scholar
  47. de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 23–72CrossRefGoogle Scholar
  48. de Leeuw JW, van der Meer JW, Rijpstra WIC, Schenck PA (1980) On the occurrence and structural identification of long chain ketones and hydrocarbons in sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 211–217Google Scholar
  49. de Leeuw JW, Rijpstra WIC, Schenck PA (1981) The occurrence and identification of C30, C31 and C32 alkan-1,15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments. Geochim Cosmochim Acta 45:2281–2285Google Scholar
  50. Derenne S, Largeau C, Casadevall E, Tegelaar E, de Leeuw JW (1988) Relationships between algal coals and resistant cell wall biopolymers of extant algae as revealed by Py-GC-MS. Fuel Process Tech 20:93–101CrossRefGoogle Scholar
  51. Derenne S, Largeau C, Casadevall E, Berkaloff C (1989) Occurrence of a resistant biopolymer in the L race of Botryococcus braunii. Phytochemistry 28:1137–1142CrossRefGoogle Scholar
  52. Derenne S, Largeau C, Casadevall E, Sellier N (1990) Direct relationship between the resistant biopolymer and the tetraterpenic hydrocarbon in the lycopadiene race of Botryococcus braunii. Phytochemistry 29:2187–2192CrossRefGoogle Scholar
  53. Dodson VJ, Mouget JL, Dahmen JL, Leblond JD (2014) The long and short of it: temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. Hydrobiologia 727:95–107CrossRefGoogle Scholar
  54. Dodson VJ, Leblond JD (2015) Now you see it, now you don’t: differences in hydrocarbon production in the diatom Phaeodactylum tricornutum due to growth temperature. J Appl Phycol 27:1463–1472CrossRefGoogle Scholar
  55. Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83CrossRefGoogle Scholar
  56. Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161CrossRefGoogle Scholar
  57. Epstein BL, D'Hondt S, Quinn JG, Zhang J, Hargraves PE (1998) An effect of dissolved nutrient concentrations on alkenone-based temperature estimates. Paleoceanography 13:122–126CrossRefGoogle Scholar
  58. Epstein BL, D'Hondt S, Hargraves PE (2001) The possible metabolic role of C37 alkenones in Emiliania huxleyi. Org Geochem 32:867–875CrossRefGoogle Scholar
  59. Gatellier J-PLA, de Leeuw JW, Sinninghe Damsté JS, Derenne S, Largeau C, Metzger PA (1993) A comparative study of macromolecular substances of a coorongite and cell walls of the extant alga Botryococcus braunii. Geochim Cosmochim Acta 57:2053–2068CrossRefGoogle Scholar
  60. Gelin F, de Leeuw JW, Sinninghe Damsté JS, Derenne S, Largeau C, Metzger P (1994) The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis. Org Geochem 21:423–435CrossRefGoogle Scholar
  61. Gelin F, Boogers I, Noordeloos AAM, Sinninghe Damsté JS, Hatcher PG, de Leeuw JW (1996) Novel, resistant microalgal polyethers: an important sink of organic carbon in the marine environment? Geochim Cosmochim Acta 60:1275–1280CrossRefGoogle Scholar
  62. Gelin F, Volkman JK, de Leeuw JW, Sinninghe Damsté JS (1997a) Mid-chain hydroxy long-chain fatty acids in microalgae from the genus Nannochloropsis. Phytochemistry 45:641–646CrossRefGoogle Scholar
  63. Gelin F, Boogers I, Noordeloos AAM, Sinninghe Damsté JS, Riegman R, de Leeuw JW (1997b) Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications. Org Geochem 26:659–675CrossRefGoogle Scholar
  64. Gelin F, Volkman JK, Largeau C, Derenne S, Sinninghe Damsté JS, de Leeuw JW (1999) Distribution of aliphatic, non-hydrolysable biopolymers in marine microalgae. Org Geochem 30:147–159CrossRefGoogle Scholar
  65. Gelpi E, Schneider H, Mann J, Oró J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–612CrossRefGoogle Scholar
  66. Gold DA, Caron A, Fournier GP, Summons RE (2017) Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature.
  67. Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440–442CrossRefGoogle Scholar
  68. Gouveia L, Marques AE, Sousa JM, Moura P, Bandarra NM (2010) Microalgae – source of natural bioactive molecules as functional ingredients. Food Sci Technol Bull Funct Foods 7:21–37CrossRefGoogle Scholar
  69. Grossi V, Raphel D, Aubert C, Rontani J-F (2000) The effect of growth temperature on the long-chain alkenes composition in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 54:393–399PubMedCrossRefPubMedCentralGoogle Scholar
  70. Grossi V, Beker B, Geenevasen JAJ, Schouten S, Raphel D, Fontaine M-F, Sinninghe Damsté JS (2004) C25 highly branched isoprenoid alkenes from the marine benthic diatom Pleurosigma strigosum. Phytochemistry 65:3049–3055PubMedCrossRefPubMedCentralGoogle Scholar
  71. He J, Zhao MX, Li L, Wang H, Wang PX (2008) Biomarker evidence of relatively stable community structure in the northern South China Sea during the last glacial and Holocene. Terr Atmos Ocean Sci 19:377–387CrossRefGoogle Scholar
  72. Ho SL, Naafs BDA, Lamy F (2013) Alkenone paleothermometry based on the haptophyte algae. In: Elias SA (ed) The Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 755–764CrossRefGoogle Scholar
  73. Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var Showa. Phytochemistry 28:1467–1470CrossRefGoogle Scholar
  74. Jeffrey SW, Brown MR, Volkman JK (1994) Haptophytes as feedstocks in mariculture. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, Systematics Association special volume no. 51. Clarendon Press, OxfordGoogle Scholar
  75. Jia J, Han DX, Gerken HG, Li YT, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res Biomass Biofuels Bioprods 7:66–77Google Scholar
  76. Kaiser J, Belt ST, Tomczak M, Brown TA, Wasmund N, Arz HW (2016) C25 highly branched isoprenoid alkenes in the Baltic Sea produced by the marine planktonic diatom Pseudosolenia calcar-avis. Org Geochem 93:51–58CrossRefGoogle Scholar
  77. Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119CrossRefGoogle Scholar
  78. Khozin-Goldberg I (2016) Lipid metabolism in microalgae. In: Borowitzka M, Beardall J, Raven JA (eds) The physiology of microalgae, Developments in applied phycology series 6. Springer, Cham, pp 413–484CrossRefGoogle Scholar
  79. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124. Scholar
  80. Leblond JD, Roche SA, Porter NM, Howard JC, Dunlap NK (2011) Sterol biosynthesis in the harmful marine dinoflagellate, Karenia brevis: identification of biosynthetic intermediates produced during exposure to the fungicide fenpropidine. Phycol Res 59:54–63CrossRefGoogle Scholar
  81. Lee RF, Loeblich AR III (1971) Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Phytochemistry 10:593–602CrossRefGoogle Scholar
  82. Li YR, Ye MW, Zhang RT, Xu JL, Zhou CX, Yan XJ (2016) Lipid compositions in diatom Conticribra weissflogii under static and aerated culture conditions. Phycol Res 64:281–290CrossRefGoogle Scholar
  83. Lipp JS, Hinrichs K-U (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833CrossRefGoogle Scholar
  84. Longo WM, Dillon JT, Tarozo R, Salacup JM, Huang Y (2013) Unprecedented separation of long chain alkenones from gas chromatography with a poly(trifluoropropylmethylsiloxane) stationary phase. Org Geochem 65:94–102CrossRefGoogle Scholar
  85. Longo WM, Theroux S, Giblin AE, Zheng YS, Dillon JT, Huang YS (2016) Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: evidence from northern Alaskan lakes. Geochim Cosmochim Acta 180:177–196CrossRefGoogle Scholar
  86. Mansour MP, Volkman JK, Holdsworth DG, Jackson AE, Blackburn SI (1999) Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50:541–548CrossRefGoogle Scholar
  87. Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984a) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203–216CrossRefGoogle Scholar
  88. Marlowe IT, Brassell SC, Eglinton G, Green JC (1984b) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141CrossRefGoogle Scholar
  89. Martinez-Roldan AJ, Perales-Vela HV, Canizares-Villanueva RO, Torzillo G (2014) Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J Appl Phycol 26:115–121CrossRefGoogle Scholar
  90. Massé G, Belt ST, Rowland SJ (2004a) Biosynthesis of unusual monocyclic alkenes by the diatom Rhizosolenia setigera (Brightwell). Phytochemistry 65:1101–1106PubMedCrossRefPubMedCentralGoogle Scholar
  91. Massé G, Belt ST, Rowland SJ, Rohmer M (2004b) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Nat Acad Sci USA 101:4413–4418PubMedCrossRefPubMedCentralGoogle Scholar
  92. Matsumoto GI, Nagashima H (1984) Occurrence of 3-hydroxy acids in microalgae and cyanobacteria and their geochemical significance. Geochim Cosmochim Acta 48:1683–1687CrossRefGoogle Scholar
  93. Matsumoto GI, Shioya M, Nagashima H (1984) Occurrence of 2-hydroxy acids in microalgae. Phytochemistry 23:1421–1423CrossRefGoogle Scholar
  94. Méjanelle L, Sanchez-Gargallo A, Bentaleb I, Grimalt JO (2003) Long chain n-alkyl diols, hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Org Geochem 34:527–538CrossRefGoogle Scholar
  95. Mercer EI, Davies CL (1974) Chlorosulfolipids of Tribonema aequale. Phytochemistry 13:1607–1610CrossRefGoogle Scholar
  96. Mercer EI, Davies CL (1979) Distribution of chlorosulpholipids in algae. Phytochemistry 18:457–462CrossRefGoogle Scholar
  97. Metzger P, Casadevall E, Pouet MJ, Pouet Y (1985) Structures of some botryococcenes: branched hydrocarbons from the B-race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002CrossRefGoogle Scholar
  98. Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934CrossRefGoogle Scholar
  99. Metzger P, Allard B, Casadevall E, Berkaloff C, Cout A (1990) Structure and chemistry of a new race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266CrossRefGoogle Scholar
  100. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mitra M, Patidar SK, George B, Shaha F, Mishra SA (2015) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res Biomass Biofuels Bioprod 8:161–167Google Scholar
  102. Nagashima H, Matsumoto GI, Fukuda I (1986) Hydrocarbons and fatty acids in two strains of the hot spring alga Cyanidium caldarium. Phytochemistry 25:2339–2341CrossRefGoogle Scholar
  103. Nakamura H, Sawada K, Araie H, Suzuki I, Shiraiwa Y (2014) Long chain alkenes, alkenones and alkenoates produced by the haptophyte alga Chrysotila lamellosa CCMP1307 isolated from a salt marsh. Org Geochem 66:90–97CrossRefGoogle Scholar
  104. Nakamura H, Sawada K, Araie H, Suzuki I, Shiraiwa Y (2015) n-Nonacosadienes from the marine haptophytes Emiliania huxleyi and Gephyrocapsa oceanica. Phytochemistry 111:107–113PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nakamura H, Sawada K, Araie H, Shiratori T, Ishida K-I, Suzuki I, Shiraiwa Y (2016) Composition of long chain alkenones and alkenoates as a function of growth temperature in marine haptophyte Tisochrysis lutea. Org Geochem 99:78–89CrossRefGoogle Scholar
  106. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nichols PD, Volkman JK, Palmisano AC, Smith GA, White DC (1988) Occurrence of an isoprenoid C25 diunsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. J Phycol 24:90–96CrossRefGoogle Scholar
  108. Olofsson M, Lamela T, Nilsson E, Berge JP, Del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592CrossRefGoogle Scholar
  109. Olofsson M, Lamela T, Nilsson E, Berge JP, Del Pino V, Uronen P, Legrand C (2014) Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 12:1891–1910PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pan H, Culp RA, Sun MY (2017) Influence of physiological states of Emiliania huxleyi cells on their lipids and associated molecular isotopic compositions during microbial degradation. J Exp Mar Biol Ecol 488:1–9CrossRefGoogle Scholar
  112. Patterson GW (1969) Sterols of Chlorella. III. Species containing ergosterol. Comp Biochem Physiol 31:391–394CrossRefGoogle Scholar
  113. Patterson GW, Gladu PK, Wikfors GH, Lusby WR (1992) Unusual tetraene sterols in some phytoplankton. Lipids 27:154–156CrossRefGoogle Scholar
  114. Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Gladu PK, Chitwood DJ, Harrison D (1994a) Sterols and alkenones of Isochrysis. Phytochemistry 35:1233–1236CrossRefGoogle Scholar
  115. Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Ghosh P, Smith BC, Gladu PK (1994b) Sterols of eustigmatophytes. Lipids 29:661–664PubMedCrossRefPubMedCentralGoogle Scholar
  116. Pedro Canavate J, Armada I, Luis Rios J, Hachero-Cruzado I (2016) Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry 124:68–78CrossRefGoogle Scholar
  117. Pelusi A, Hanawa Y, Araie H, Suzuki I, Giordano M, Shiraiwa Y (2016) Rapid detection and quantification of haptophyte alkenones by Fourier transform infrared spectroscopy (FTIR). Algal Res Biomass Biofuels Bioprods 19:48–56Google Scholar
  118. Poulin M, Massé G, Belt ST, Delavault P, Rousseau F, Robert JM, Rowland SJ (2004) Morphological, biochemical and molecular evidence for the transfer of Gyrosigma nipkowii Meister to the genus Haslea (Bacillariophyta). Eur J Phycol 39:181–195CrossRefGoogle Scholar
  119. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  120. Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310CrossRefGoogle Scholar
  121. Prahl FG, Wolfe GV, Sparrow MA (2003) Physiological impacts on alkenone paleothermometry. Paleoceanography 18(2), art. no.-1025. Scholar
  122. Prahl FG, Rontani J-F, Volkman JK, Sparrow MA, Royer IM (2006) Unusual C35 and C36 alkenones in a paleoceanographic benchmark strain of Emiliania huxleyi. Geochim Cosmochim Acta 70:2856–2867CrossRefGoogle Scholar
  123. Rampen SW, Schouten S, Hopmans EC, Abbas B, Noordeloos AAM, Geenevasen JAJ, Moldowan JM, Denisevich P, Sinninghe Damsté JS (2009a) Occurrence and biomarker potential of 23-methyl steroids in diatoms and sediments. Org Geochem 40:219–228CrossRefGoogle Scholar
  124. Rampen SW, Volkman JK, Hur SB, Abbas BA, Schouten S, Jameson ID, Holdsworth DG, Bae JH, Sinninghe Damsté JS (2009b) Occurrence of gorgosterol in diatoms of the genus Delphineis. Org Geochem 40:144–147CrossRefGoogle Scholar
  125. Rampen SW, Abbas BA, Schouten S, Sinninghe Damsté JS (2010) A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol Oceanogr 55:91–105CrossRefGoogle Scholar
  126. Rampen SW, Schouten S, Sinninghe Damsté JS (2011) Occurrence of long chain 1,14-diols in Apedinella radians. Org Geochem 42:572–574CrossRefGoogle Scholar
  127. Rampen SW, Datema M, Rodrigo-Gamiz M, Schouten S, Reichart G-J, Sinninghe Damsté JS (2014) Sources and proxy potential of longchain alkyl diols in lacustrine environments. Geochim Cosmochim Acta 144:59–71CrossRefGoogle Scholar
  128. Rechka JA, Maxwell JR (1988) Unusual long chain ketones of algal origin. Tetrahedron Lett 29:2599–2600CrossRefGoogle Scholar
  129. Rezanka T, Lukaysky J, Nedbalova L, Sigler K (2017) Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids. Phytochemistry 139:88–97PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rieley G, Teece MA, Peakman TM, Raven AM, Greene KJ, Clarke TP, Murray M, Leftley JW, Campbell CN, Harris RP, Parkes RJ, Maxwell JR (1998) Long-chain alkenes of the haptophytes Isochrysis galbana and Emiliania huxleyi. Lipids 33:617–625PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rontani J-F, Marchand D, Volkman JK (2001) NaBH4 reduction of alkenones to the corresponding alkenols: a useful tool for their characterisation in natural samples. Org Geochem 32:1329–1341CrossRefGoogle Scholar
  132. Rontani J-F, Beker B, Volkman JK (2004) Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65:117–126PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rontani J-F, Prahl FG, Volkman JK (2006a) Characterization of unusual alkenones and alkyl alkenoates by electron ionization gas chromatography/mass spectrometry. Rapid Comm Mass Spectrom 20:583–588CrossRefGoogle Scholar
  134. Rontani J-F, Prahl FG, Volkman JK (2006b) Re-examination of the double bond positions of alkenones and derivatives: biosynthetic implications. J Phycol 42:800–813CrossRefGoogle Scholar
  135. Rontani J-F, Harji R, Guasco S, Prahl FG, Volkman JK, Bhosle NB, Bonin P (2008) Degradation of alkenones by aerobic heterotrophic bacteria: selective or not? Org Geochem 39:34–51CrossRefGoogle Scholar
  136. Rosell-Melé A (1998) Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Paleoceanography 13:694–703CrossRefGoogle Scholar
  137. Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota – a review. Mar Env Res 30:191–216CrossRefGoogle Scholar
  138. Rowland SJ, Belt ST, Cooke DA, Hird SJ, Neeley S, Robert J-M (1995) Structural characterisation of saturated through heptaunsaturated highly branched isoprenoids. In: Grimalt J, Dorronsoro C (eds) Organic geochemistry: developments and applications to energy, climate, environment and human history. A.I.G.O.A. Donostia-San Sebastian, Spain, pp 580–582Google Scholar
  139. Rowland SJ, Allard WG, Belt ST, Massé G, Robert J-M, Blackburn S, Frampton D, Revill AT, Volkman JK (2001) Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58:717–728PubMedCrossRefPubMedCentralGoogle Scholar
  140. Sachs JP, Maloney AE, Gregersen J, Paschall C (2016) Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi. Geochim Cosmochim Acta 189:96–109CrossRefGoogle Scholar
  141. Sanz PC, Smik L, Belt ST (2016) On the stability of various highly branched isoprenoid (HBI) lipids in stored sediments and sediment extracts. Org Geochem 97:74–77CrossRefGoogle Scholar
  142. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schouten S, Klein Breteler WCM, Blokker P, Rijpstra WIC, Grice K, Baas M, Sinninghe Damsté JS (1998) Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim Cosmochim Acta 62:1397–1406CrossRefGoogle Scholar
  144. Serive B, Nicolau E, Bérard JB, Kaas R, Pasquet V, Picot L, Cadoret JP (2017) Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS One 12(2). Scholar
  145. Shiratake T, Sato A, Minoda A, Tsuzuki M, Sato N (2013) Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a green alga, Chlorella kessleri. PLoS One 8(11). Scholar
  146. Shukla M, Dhar DW (2013) Biotechnological potentials of microalgae: past and present scenario. Vegetos 26:229–237Google Scholar
  147. Sikes EL, Volkman JK (1993) Calibration of alkenone unsaturation ratios (\( {U}_{37}^{K^{\prime }} \)) for paleotemperature estimation in cold polar waters. Geochim Cosmochim Acta 57:1883–1889CrossRefGoogle Scholar
  148. Sikes EL, Sicre MA (2002) Relationship of the tetra-unsaturated C37 alkenone to salinity and temperature: implications for paleoproxy applications. Geochem Geophys Geosyst 3:Article 1063. Scholar
  149. Sinninghe Damsté JS, Rijpstra WIC, Schouten S, Peletier H, van der Maarel MJEC, Gieskes WWC (1999a) A C25 highly branched isoprenoid alkene and C25 and C27 n-polyenes in the marine diatom Rhizosolenia setigera. Org Geochem 30:95–100CrossRefGoogle Scholar
  150. Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Hopmans EC, Peletier H, Gieskes WWC, Geenevasen JAJ (1999b) Structural identification of the C25 highly branched isoprenoid pentaene in the marine diatom Rhizosolenia setigera. Org Geochem 30:1581–1583CrossRefGoogle Scholar
  151. Sinninghe Damsté JS, Rampen S, Rijpstra WIC, Abbas B, Muyzer G, Schouten S (2003) A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high-nutrient conditions. Geochim Cosmochim Acta 67:1339–1348CrossRefGoogle Scholar
  152. Sinninghe Damsté JS, Muyzer G, Abbas B, Rampen SW, Massé G, Allard WG, Belt ST, Robert JM, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304:584–587CrossRefGoogle Scholar
  153. Smik L, Belt ST (2017) Distributions of the Arctic sea ice biomarker proxy IP25 and two phytoplanktonic biomarkers in surface sediments from West Svalbard. Org Geochem 105:39–41CrossRefGoogle Scholar
  154. Sorigué D, Légeret B, Cuiné S, Morales P, Mirabella B, Guédeney G, Li-Beisson Y, Jetter R, Peltier G, Beisson F (2016) Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol 171:2393–2405PubMedPubMedCentralGoogle Scholar
  155. Stonik V, Stonik I (2015) Low-molecular-weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar Drugs 13:3672–3709PubMedPubMedCentralCrossRefGoogle Scholar
  156. Stranska-Zachariasova M, Kastanek P, Dzuman Z, Rubert J, Godula M, Hajslova J (2016) Bioprospecting of microalgae: proper extraction followed by high performance liquid chromatographic-high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization. J Chrom B Analyt Techol Biomed Life Sci 1015:22–33CrossRefGoogle Scholar
  157. Tegelaar EW, de Leeuw JW, Derenne S, Largeau CA (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3106CrossRefGoogle Scholar
  158. Templier J, Diesendorf C, Largeau C, Casadevall E (1992) Metabolism of normal-alkadienes in the A Race of Botryococcus braunii. Phytochemistry 31:113–120CrossRefGoogle Scholar
  159. Templier J, Largeau C, Casadevall E (1993) Variations in external and internal lipids associated with inhibition of the resistant biopolymer from the a race of Botryococcus braunii. Phytochemistry 33:1079–1086CrossRefGoogle Scholar
  160. Theroux S, D’Andrea WJ, Toney J, Amaral-Zettler L, Huang Y (2010) Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: implications for continental paleotemperature reconstructions. Earth Planet Sci Lett 300:311–320CrossRefGoogle Scholar
  161. Theroux S, Toney J, Amaral-Zettler L, Huang Y (2013) Production and temperature sensitivity of long chain alkenones in the cultured haptophyte Pseudoisochrysis paradoxa. Org Geochem 62:68–73CrossRefGoogle Scholar
  162. Toney JL, Theroux S, Andersen RA, Coleman A, Amaral-Zettler L, Huang YS (2012) Culturing of the first 37:4 predominant lacustrine haptophyte: geochemical, biochemical, and genetic implications. Geochim Cosmochim Acta 78:51–64CrossRefGoogle Scholar
  163. Versteegh GJM, Bosch HJ, de Leeuw JW (1997) Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids: a critical review. Org Geochem 27:1–13CrossRefGoogle Scholar
  164. Versteegh GJM, Riegman R, de Leeuw JW, Jansen JHF (2001) \( {U}_{37}^{K^{\prime }} \) values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations. Org Geochem 32:785–794CrossRefGoogle Scholar
  165. Villanueva L, Besseling M, Rodrigo-Gamiz M, Rampen SW, Verschuren D, Sinninghe Damsté JS (2014a) Potential biological sources of long chain alkyl diols in a lacustrine system. Org Geochem 68:27–30CrossRefGoogle Scholar
  166. Villanueva L, Rijpstra WIC, Schouten S, Sinninghe Damsté JS (2014b) Genetic biomarkers of the sterol-biosynthetic pathway in microalgae. Env Microbiol Rep 6:35–44CrossRefGoogle Scholar
  167. Volkman JK, Johns RB (1977) The geochemical significance of positional isomers of unsaturated fatty acids from an intertidal zone sediment. Nature 267:693–694CrossRefGoogle Scholar
  168. Volkman JK, Eglinton G, Corner EDS, Sargent JR (1980a) Novel unsaturated straight-chain C37–C39 methyl and ethyl ketones in marine sediments and a coccolithophorid Emiliania huxleyi. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 219–227Google Scholar
  169. Volkman JK, Eglinton G, Corner EDS, Forsberg TEV (1980b) Long chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622CrossRefGoogle Scholar
  170. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99CrossRefGoogle Scholar
  171. Volkman JK, Burton HR, Everitt DA, Allen DI (1988) Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia 165:41–57CrossRefGoogle Scholar
  172. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1992) C30–C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org Geochem 18:131–138CrossRefGoogle Scholar
  173. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15CrossRefGoogle Scholar
  174. Volkman JK, Barrett SM, Dunstan GA (1994a) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–413CrossRefGoogle Scholar
  175. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1994b) Sterol biomarkers for microalgae from the green algal class Prasinophyceae. Org Geochem 21:1211–1218CrossRefGoogle Scholar
  176. Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520CrossRefGoogle Scholar
  177. Volkman JK, Farmer CL, Barrett SM, Sikes EL (1997) Unusual dihydroxysterols as chemotaxonomic markers for microalgae from the order Pavlovales (Haptophyceae). J Phycol 33:1016–1023CrossRefGoogle Scholar
  178. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179CrossRefGoogle Scholar
  179. Volkman JK, Barrett SM, Blackburn SI (1999a) Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Org Geochem 30:307–318CrossRefGoogle Scholar
  180. Volkman JK, Barrett SM, Blackburn SI (1999b) Fatty acids and hydroxy fatty acids in three species of freshwater eustigmatophytes. J Phycol 35:1005–1012CrossRefGoogle Scholar
  181. Volkman JK (2000) Ecological and environmental factors affecting alkenone distributions in seawater and sediments. Geochem Geophys Geosyst 1: Paper number 2000GC000061CrossRefGoogle Scholar
  182. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506PubMedCrossRefPubMedCentralGoogle Scholar
  183. Volkman JK, Brown MR (2005) Nutritional value of microalgae and applications. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and applications, vol 1. Science Publishers, Enfield, pp 407–457Google Scholar
  184. Volkman JK (2014) Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Org Geochem 75:36–47CrossRefGoogle Scholar
  185. Volkman JK (2016) Sterols in microalgae. In: Borowitzka M, Beardall J, Raven JA (eds) The physiology of microalgae, Developments in applied phycology series 6. Springer, Cham, pp 485–505CrossRefGoogle Scholar
  186. Wang HT, Yao CH, Liu YN, Meng YY, Wang WL, Cao XP, Xue S (2015) Identification of fatty acid biomarkers for quantification of neutral lipids in marine microalgae Isochrysis zhangjiangensis. J Appl Phycol 27:249–255CrossRefGoogle Scholar
  187. Weete JD (1976) Algal and fungal waxes. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, pp 349–418Google Scholar
  188. Wraige EJ, Belt ST, Lewis CA, Cooke DA, Robert J-M, Massé G, Rowland SJ (1997) Variations in structures and distributions of C25 highly branched isoprenoid (HBI) alkenes in cultures of the diatom, Haslea ostrearia (Simonsen). Org Geochem 27:497–505Google Scholar
  189. Xu L, Reddy CM, Farrington JW, Frysinger GS, Gaines RB, Johnson CG, Nelson RK, Eglinton TI (2001) Identification of a novel alkenone in Black Sea sediments. Org Geochem 32:633–645CrossRefGoogle Scholar
  190. Xu ZB, Yan XJ, Pei LQ, Luo QJ, Xu JL (2008) Changes in fatty acids and sterols during batch growth of Pavlova viridis in photobioreactor. J Appl Phycol 20:237–243CrossRefGoogle Scholar
  191. Yon DA, Maxwell JR, Ryback G (1982) 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett 23:2143–2146CrossRefGoogle Scholar
  192. Zabeti N, Bonin P, Volkman JK, Jameson ID, Guasco S, Rontani J-F (2010) Potential alteration of \( {U}_{37}^{K^{\prime }} \) paleothermometer due to selective degradation of alkenones by marine bacteria isolated from the haptophyte Emiliania huxleyi. FEMS Microbiol Ecol 73:83–94PubMedPubMedCentralGoogle Scholar
  193. Zhao JJ, An CB, Longo WM, Dillon JT, Zhao YT, Shi C, Chen YF, Huang Y (2014) Occurrence of extended chain length C41 and C42 alkenones in hypersaline lakes. Org Geochem 75:48–53CrossRefGoogle Scholar
  194. Zhang YD, Su YL, Liu ZW, Chen XC, Yu JL, Di XD, Jin M (2015) Long-chain n-alkenes in recent sediment of Lake Lugu (SW China) and their ecological implications. Limnologica 52:30–40CrossRefGoogle Scholar
  195. Zhang ZR, Volkman JK (2017) Algaenan structure in the microalga Nannochloropsis oculata characterized by stepwise pyrolysis. Org Geochem 104:1–7CrossRefGoogle Scholar
  196. Zheng YS, Dillon JT, Zhang YF, Huang YS (2016) Discovery of alkenones with variable methylene-interrupted double bonds: implications for the biosynthetic pathway. J Phycol 52:1037–1050PubMedCrossRefPubMedCentralGoogle Scholar
  197. Zheng YS, Tarozo R, Huang YS (2017) Optimizing chromatographic resolution for simultaneous quantification of long chain alkenones, alkenoates and their double bond positional isomers. Org Geochem 111:136–143CrossRefGoogle Scholar
  198. Zink K-G, Leythaeuser D, Melkonian M, Schwark L (2001) Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters. Geochim Cosmochim Acta 65:253–265CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIRO Oceans and AtmosphereHobartAustralia

Personalised recommendations