Pesticide Residues in Fruits and Vegetables

  • Samira Mebdoua
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Fruits and vegetables play an important role in human nutrition and health; they constitute an important part of our daily diet. They are important sources of carbohydrates, vitamins, trace minerals, and antioxidants. Therefore, they can be contaminated by pesticides used for the protection of their culture. The use of pesticides to control pests in fruits and vegetables can lead to the presence of pesticide residues. The level of these residues can be below the maximum residue limit (MRL) if good agricultural practices (GAP) were used. The presence of residues with level exceeding MRLs should be interpreted as violation of GAP. In many reports, pesticide residues are present in the majority of fruits and vegetables; they are more detected in fruits than in vegetables. The percentage of exceeding MRLs is less than 20% in most monitoring programs. The risk assessment for long-term and short-term exposure must be done for all pesticides detected to ensure consumer’s health protection.


Fruit Vegetable Pesticide residues Risk assessment MRL 


  1. 1.
    Fillatre Y (2011) Produits phytosanitaires: Développement d’une méthode d’analyse multi-résidus dans les huiles essentielles par couplage de la chromatographie liquide avec la spectrométrie de masse en mode tandem. Dissertation, University of AngersGoogle Scholar
  2. 2.
    Schiavon M, Jacquin F (1972) Contribution to the technical study of the migration of some organic compounds in soils. Bull de l’Ecole Natl Supérieure d’Agronomie et des Ind Aliment:221–225Google Scholar
  3. 3.
    Merhi M (2008) Etude de l’impact de l’exposition à des mélanges de pesticides à faibles doses: caractérisation des effets sur des lignées cellulaires humaines et sur le système hématopoïétique murin. Dissertation, University of ToulouseGoogle Scholar
  4. 4.
    [FAO] Food and Agriculture Organization (2003) Code international de conduite pour la distribution et l’utilisation des pesticides (version révisée). FAO, RomeGoogle Scholar
  5. 5.
    Boland J, Koomen I, van Lidth de Jeude J, Oudejans J (2004) Agrodok 29: Les pesticides: composition, utilisation et risques. Fondation Agromisa, WageningenGoogle Scholar
  6. 6.
    Fournier J (1988) Chimie des Pesticides. Cultures et techniques, NantesGoogle Scholar
  7. 7.
    Stevens JT, Sumner DD (1991) Herbicides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San DiegoGoogle Scholar
  8. 8.
    Hess FD (2000) Light –dependent herbicides: an overview. Weed Sci 48:160–170CrossRefGoogle Scholar
  9. 9.
    Gauvrit C (2005) Modes d’action des herbicides. In: Regnault-Roger C (ed) Enjeux phytosanitaire pour l’agriculture et l’environnement. Lavoisier, ParisGoogle Scholar
  10. 10.
    Oerke EC (1996) The impact of disease and disease control on crop production. In: Lyr H, Russell PE, Sisler H (eds) Modern fungicides and antifungal compounds I. Intercept, AndoverGoogle Scholar
  11. 11.
    Maumené C (2008) Un fongicide à la loupe: le mode d’action des triazoles. Perspect Agric 345:60–61Google Scholar
  12. 12.
    Testud F, Marcotullio E (2001) Les dithiocarbamates. In: Testud F, Garnier R, Delemotte B (eds) Toxicologie humaine des produits phytosanitaires. Eska – Lacassagne, ParisGoogle Scholar
  13. 13.
    Testud F (2001) Les Carbamates. In: Testud F, Garnier R, Delemotte B (eds) Toxicologie humaine des produits phytosanitaires. Eska – Lacassagne, ParisGoogle Scholar
  14. 14.
    Ray DE (1991) Pesticides derived from plants and other organisms. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic, San DiegoGoogle Scholar
  15. 15.
    Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  16. 16.
    Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364CrossRefGoogle Scholar
  17. 17.
    Laurent FM, Rathahao E (2003) Distribution of [(14)C] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51:8005–8010CrossRefGoogle Scholar
  18. 18.
    Maxim L, Van Der Sluijs JP (2007) Uncertainty: cause or effect of stakeholders’ debates? Analysis of a case study: the risk for honeybees of the insecticide Gaucho. Sci Total Environ 376:1–17CrossRefGoogle Scholar
  19. 19.
    Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  20. 20.
    Culliney TW (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management pesticide problems, vol 3. Springer, New YorkGoogle Scholar
  21. 21.
    Couteaux A, Le Jeune V (2011) Index phytosanitaire ACTA 2011, 47th edn. ACTA, ParisGoogle Scholar
  22. 22.
    [DPVCT] Direction de la Protection des Végétaux et Contrôles Techniques (2015) Index des produits phytosanitaires à usage agricole. _PHYTO_2015.pdf. Accessed 20 Jan 2016
  23. 23.
    Jakubowski M, Trzcinka-Ochocka M (2005) Biological monitoring of exposure: trends and key developments. J Occup Health 47:22–48CrossRefGoogle Scholar
  24. 24.
    Baldi I, Lebailly P, Jean S, Rougetet L, Dulaurent S, Marquet P (2006) Pesticide contamination of workers in vineyards in France. J Expo Sci Environ Epidemiol 16:115–124CrossRefGoogle Scholar
  25. 25.
    Van Leeuwen JA, Waltner-Toews D, Abernathy T, Smit B, Shoukri M (1999) Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987–1991. Int J Epidemiol 28:836–840CrossRefGoogle Scholar
  26. 26.
    Blair A, Zheng T, Linos A, Stewart PA, Zhang YW, Cantor KP (2001) Occupation and leukemia: a population-based case-control study in Iowa and Minnesota. Am J Ind Med 40:3–14CrossRefGoogle Scholar
  27. 27.
    Buzio L, Tondel M, De Palma G, Buzio C, Franchini I, Mutti A, Axelson O (2002) Occupational risk factors for renal cell cancer: an Italian case-control study. La Medecina del Lavaro 93:303–309Google Scholar
  28. 28.
    Hu J, Mao Y, White K (2002) Renal cell carcinoma and occupational exposure to chemicals in Canada. Occup Med 52:157–164CrossRefGoogle Scholar
  29. 29.
    Mills PK, Yang R (2003) Prostate cancer risk in California farm workers. J Occup Environ Med 45:249–258CrossRefGoogle Scholar
  30. 30.
    Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197CrossRefGoogle Scholar
  31. 31.
    McCauley LA, Anger WK, Keifer M, Langley R, Robson MG, Rohlman D (2006) Studying health outcomes in farmworker populations exposed to pesticides. Environ Health Perspect 114:953–960CrossRefGoogle Scholar
  32. 32.
    Van Maele-Fabry G, Libotte V, Willems J, Lison D (2006) Review and metaanalysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control 17:353–373CrossRefGoogle Scholar
  33. 33.
    Provost D, Cantagrel A, Lebailly P, Jaffre A, Loyant V, Loiseau H, Vital A, Brochard P, Baldi I (2007) Brain tumours and exposure to pesticides: a case control study in southwestern France. Occup Environ Med 64:509–514CrossRefGoogle Scholar
  34. 34.
    Van Maele-Fabry G, Duhayon S, Mertens C, Lison D (2008) Risk of leukaemia among pesticide manufacturing workers: a review and meta-analysis of cohort studies. Environ Res 106:121–137CrossRefGoogle Scholar
  35. 35.
    McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127CrossRefGoogle Scholar
  36. 36.
    Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157:409–414CrossRefGoogle Scholar
  37. 37.
    Bosma H, vanBoxtel MP, Ponds RW, Houx PJ, Jolles J (2000) Pesticide exposure and risk of mild cognitive dysfunction. Lancet 356:912–913CrossRefGoogle Scholar
  38. 38.
    [WHO] World Health Organization (1992) Our planet, our health: report of the WHO Commission on Health and Environment. WHO, GenevaGoogle Scholar
  39. 39.
    Baldi I, Filleul L, Mohammed-Brahim B, Fabrigoule C, Dartigues JF, Schwall S, Drevet JP, Salamon R, Brochard P (2001) Neuropsychologic effects of long term exposure to pesticides: results from the French Phytoner study. Environ Health Perspect 109:839–844CrossRefGoogle Scholar
  40. 40.
    Cole DC, Carpio F, Julian J, Leon N (1998) Assessment of peripheral nerve function in an Ecuadorian rural population exposed to pesticides. J Toxicol Environ Health 55:77–91CrossRefGoogle Scholar
  41. 41.
    Cohn BA (2011) Developmental and environmental origins of breast cancer: DDT as a case study. Reprod Toxicol 31:302–311CrossRefGoogle Scholar
  42. 42.
    Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20:475–482CrossRefGoogle Scholar
  43. 43.
    Sugiyama S, Shimada N, Miyoshi H, Yamauchi K (2005) Detection of thyroid system disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol Sci 88:367–374CrossRefGoogle Scholar
  44. 44.
    Roeleveld N, Bretveld R (2008) The impact of pesticides on male fertility. Curr Opin Obstet Gynecol 20:229–233CrossRefGoogle Scholar
  45. 45.
    Saunders M, Fox D, Salisbury C, Strokes V, Palmer A, Preece A (2004) Placental transfer and foetal uptake of pesticides. Toxicol Appl Pharmacol 197(3):341Google Scholar
  46. 46.
    Jurewicz J, Hanke W, Johansson C, Lundqvist C, Ceccatelli S, van den Hazel P, Saunders M, Zetterstrom R (2006) Adverse health effects of children’s exposure to pesticides: what do we really know and what can be done about it. Acta Paediatr Suppl 95:71–80CrossRefGoogle Scholar
  47. 47.
    Lu C, Barr DB, Pearson MA, Waller LA (2008) Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ Health Perspect 116:537–542CrossRefGoogle Scholar
  48. 48.
    Carbone P, Giordano F, Nori F, Mantovani A, Taruscio D, Lauria L, Figa-Talamanca I (2006) Cryptorchidism and hypospadias in the Sicilian district of Ragusa and the use of pesticides. Reprod Toxicol 22:8–12CrossRefGoogle Scholar
  49. 49.
    Nasreddine L, Parent-Massin D (2002) Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol Lett 127:29–41CrossRefGoogle Scholar
  50. 50.
    Fussell RJ, Jackson AK, Reynolds SL, Wilson MF (2002) Assessment of the stability of pesticides during cryogenic sample processing: 1. Apples J Agric Food Chem 50:441–448CrossRefGoogle Scholar
  51. 51.
    Baril A, Whiteside M, Boutin C (2005) Analysis of a database of pesticide residues on plants for wildlife risk assessment. Environ Toxicol Chem 24:360–371CrossRefGoogle Scholar
  52. 52.
    Commission du Codex Alimentarius (1994) Commission du Codex Alimentarius: Résidus de pesticides dans les denrées alimentaires. FAO/OMS, RomeGoogle Scholar
  53. 53.
    Couteaux A, Le Jeune V (2004) Index phytosanitaire ACTA 2004, 40e edn. ACTA, ParisGoogle Scholar
  54. 54.
    Racke KD (2007) Pesticide residues in food and international trade: regulation and safety considerations. In: Ohkawa H, Miyagawa H, Lee PW (eds) Pesticide chemistry: crop protection, Public Health, Environmental Safety. Wiley-vch, Verlag, WeinheimGoogle Scholar
  55. 55.
    Nougadère A (2015) Surveillance des expositions alimentaires aux résidus de pesticides: développement d’une méthode globale d’appréciation quantitative du risque pour optimiser l’évaluation et la gestion du risque sanitaire. Dissertation, University of ToulouseGoogle Scholar
  56. 56.
    LeDoux M (2011) Analytical methods applied to the determination of pesticide residues in foods of animal origin: a review of the past two decades. J Chromatogr A 1218:1021–1036CrossRefGoogle Scholar
  57. 57.
    Zollner P, Leitner A, Berner D, Kleinova M, Jodlbauer J, Mayer BX, Lindner W (2003) Improving LC–MS/MS analyses in complex food matrices, part I: sample preparation and chromatography. LC GC Eur 16:163–168Google Scholar
  58. 58.
    Ferrer C, Jose Gómez M, García-Reyes JF, Ferrer I, Thurman EM, Fernández-Alba AR (2005) Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1069:183–194CrossRefGoogle Scholar
  59. 59.
    Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F (2012) A review of sample preparation methods for the pesticide residue analysis in foods. Cent Eur J Chem 10:900–925Google Scholar
  60. 60.
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid- phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431Google Scholar
  61. 61.
    Lehotay SJ (2011) QuEChERS sample preparation approach for mass spectrometric analysis of pesticide residues in foods. In: Zweigenbaum J (ed) Mass spectrometry in food safety: methods and protocols. Springer, HeidelbergGoogle Scholar
  62. 62.
    Lehotay SJ, De Kok A, Hiemstra M, Van Bodegraven P (2005) Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J AOAC Int 88:595–614Google Scholar
  63. 63.
    Gonzalez-Curbelo MA, Lehotay SJ, Hernandez-Borges J, Rodriguez-Delgado MA (2014) Use of ammonium formate in QuEChERS for high throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. J Chromatogr A 1358:75–84CrossRefGoogle Scholar
  64. 64.
    Cunha SC, Fernandes JO, Alves A, Oliveira MBPP (2009) Fast low-pressure gas chromatography–mass spectrometry method for the determination of multiple pesticides in grapes, musts and wines. J Chromatogr A 1216:119–126CrossRefGoogle Scholar
  65. 65.
    Gilbert-López B, García-Reyes JF, Lozano A, Fernández-Alba AR, Molina-Díaz A (2010) Large-scale pesticide testing in olives by liquid chromatography-electrospray tandem mass spectrometry using two sample preparation methods based on matrix solid-phase dispersion and QuEChERS. J Chromatogr A 1217:6022–6035CrossRefGoogle Scholar
  66. 66.
    Lacina O, Urbanova J, Poustka J, Hajslova J (2010) Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometr. J Chromatogr A 1217:648–659CrossRefGoogle Scholar
  67. 67.
    Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217:2548–2560CrossRefGoogle Scholar
  68. 68.
    Koesukwiwat U, Lehotay SJ, Miao S, Leepipatpiboon N (2010) High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 121:6692–6703CrossRefGoogle Scholar
  69. 69.
    Cieślik E, Sadowska-Rociek A, Ruiz JMM, Surma-Zadora M (2011) Evaluation of QuEChERS method for the determination of organochlorine pesticide residues in selected groups of fruits. Food Chem 125:773–778CrossRefGoogle Scholar
  70. 70.
    Hernández-Borges J, Cabrera JC, Rodríguez-Delgado M, Hernandez-Suarez EM, Sauco VG (2009) Analysis of pesticide residues in bananas harvested in the Canary Islands (Spain). Food Chem 113:313–319CrossRefGoogle Scholar
  71. 71.
    Alla SAG, Loutfy NM, Shendy AH, Ahmed MT (2015) Hazard index, a tool for a long term risk assessment of pesticide residues in some commodities, a pilot study. Regul Toxicol Pharmacol 73:985–991CrossRefGoogle Scholar
  72. 72.
    Latif YS, Sherazi TH, Bhanger MI (2011) Assessment of pesticide residues in commonly used vegetables in Hyderabad, Pakistan. Ecotoxicol Environ Saf 74:2299–2303CrossRefGoogle Scholar
  73. 73.
    Bakırcı GT, Acay DBY, Bakırcı F, Otles S (2014) Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem 160:379–392CrossRefGoogle Scholar
  74. 74.
    Stachniuk A, Szmagara A, Czeczko R, Fornal E (2017) LC-MS/MS determination of pesticide residues in fruits and vegetables. J Environ Sci Health B 52:446–457CrossRefGoogle Scholar
  75. 75.
    PRiF [Pesticide Residues in Food] (2017) School fruit and vegetable scheme report on pesticide residues monitoring: summer term 2017 Accessed 20 Dec 2017
  76. 76.
    Jallow MFA, Awadh DG, Albaho MS, Devi VY, Ahmad N (2017) Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int J Environ Res Public Health 2017(14):833. CrossRefGoogle Scholar
  77. 77.
    U.S. Food and Drug Administration (2017) Pesticide residue monitoring program fiscal year 2015. Accessed 12 Nov 2017
  78. 78.
    Mebdoua S, Lazali M, Ounane SM, Tellah S, Nabi F, Ounane G (2017) Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Addit Contam Part B Surveill 10:91–98CrossRefGoogle Scholar
  79. 79.
    Jardim ANO, Caldas ED (2012) Brazilian monitoring programs for pesticide residues in food- results from 2001 to 2010. Food Control 25:607–616CrossRefGoogle Scholar
  80. 80.
    [EFSA] European Food Safety Authority] (2017) The 2015 European Union report on pesticide residues in food. EFSA J 15:4791., 134 ppGoogle Scholar
  81. 81.
    [WHO] World Health Organization (1997) Guidelines for predicting dietary intake of pesticide residues (revised). en/pesticide _en.pdf. Accessed 25 Apr 2016
  82. 82.
    [EFSA] European Food Safety Authority (2010) Scientific report of EFSA 2008 annual report on pesticide residues according to Article 32 of Regulation (EC) No 396/20051. European Food Safety Authority; EFSA, ParmeGoogle Scholar
  83. 83.
    [FAO] Food and Agriculture Organization (2016) Evaluation of pesticide residues: for estimation of maximum residue limits and calculation of dietary intake, training manual. FAO, RomeGoogle Scholar
  84. 84.
    [WHO] World Health Organization (2014) International estimated short-term intake (IESTI) [Internet]. Accessed 3 June 2017

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Mebdoua
    • 1
  1. 1.Laboratoire d’amélioration Intégrative des Productions VégétalesEcole Nationale Supérieure AgronomiqueAlgerAlgeria

Personalised recommendations