Sweet Potato: Bioactive Compounds and Health Benefits

  • Remya Mohanraj
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Sweet potato, a delicious root vegetable, possesses high nutritional value. It is reported to exhibit anticancer, antidiabetic, and anti-inflammatory activities and to be a natural alternative to estrogen therapy. Sweet potatoes are a rich source of phytochemical compounds, and plant-derived compounds always have been an important source of several clinically useful biomolecules. This chapter aims to focus on the health benefits and phytochemical composition of sweet potato with special emphasis on 4-ipomeanol. 4-Ipomeanol, produced by infected sweet potatoes, is a potential anticancer agent. Earlier studies revealed that bioactivation of 4-ipomeanol to a cytotoxic metabolite occurred particularly in tissues that are abundant in specific P450 mixed function oxidase enzymes. Based on the above rationale, 4-ipomeanol was the first agent to undergo clinical development as an anticancer agent especially against lung cancer. 4-Ipomeanol as a potential prodrug for P450-directed gene therapy of liver and brain cancers has also been investigated. Recent findings suggest that 18F-labelled 4-ipomeanol could be used in imaging tumors and monitoring enzyme/prodrug interactions.


Sweet potato 4-Ipomeanol Anti-cancer activity Phytochemical composition 


  1. 1.
    Purseglove JW (1972) Tropical crops: dicotyledons, vol 1. Longman, LondonGoogle Scholar
  2. 2.
    Woolfe JA (1992) Sweet potato–past and present. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Loebenstein G, Fuentes S, Cohen J, Salazar LF (2003) Sweet potato. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Kluwer, DordrechtCrossRefGoogle Scholar
  4. 4.
    Zhao G, Kan J, Li Z, Chen Z (2005) Characterization and immunostimulatory activity of an (1→6)-a-D-glucan from the root of Ipomoea batatas. Int Immunopharmacol 5:1436–1445CrossRefGoogle Scholar
  5. 5.
    Parle M, Monika (2015) Sweet potato as a super food. Int J Res Ayurveda Pharm 6:557–562CrossRefGoogle Scholar
  6. 6.
    Abel C, Busia K (2005) An exploratory ethno botanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern Med Rev 10:112–122Google Scholar
  7. 7.
    Pochapski MT, Fosquiera EC, Esmerino LA, Santos EB, Farago PV, Santos FA et al (2011) Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn Mag 7:165–170CrossRefGoogle Scholar
  8. 8.
    Ludvik B, Neuffer B, Pacini G (2004) Efficacy of Ipomoea batatas (Caiapo) on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care 27:436–440CrossRefGoogle Scholar
  9. 9.
    Emmanuel N (2010) Ethno medicines used for treatment of prostatic disease in Foumban, Cameroon. Afr J Pharm Pharmacol 4:793–805Google Scholar
  10. 10.
    Duke JA, Wain KK (1981) Medicinal plants of the world. Computer index with more than 85,000 entries, 3 vols, Plants genetics and germplasm Institute. Agriculture Research Service, Beltsville, MarylandGoogle Scholar
  11. 11.
    Diaz JL (1976) Usos de las Plantas Medicinales de Mexico. Monografias Cientificas II. Instituto Mexican para el Estudio de las Plantas Medicinales, A.C., MexicoGoogle Scholar
  12. 12.
    Reed CF (1976) Information summaries on 1000 economic plants. Typescripts submitted to the USDAGoogle Scholar
  13. 13.
    Motsa NM, Modi AT, Mabhaudhi T (2015) Sweet potato (Ipomoea batatas L.) as a drought tolerant and food security crop. S Afr J Sci 111:11–12CrossRefGoogle Scholar
  14. 14.
    Anbuselvi S, Muthumani S (2014) Phytochemical and antinutritional constituents of sweet potato. J Chem Pharm Res 6:380–383Google Scholar
  15. 15.
    Panigoro R, Dhianwaty D (2014) Total glucose and crude fiber in local red sweet potato [Ipomoea batatas L. (Lam)] tuber. Int J Pharm Pharm Sci 6:147–149Google Scholar
  16. 16.
    Woolfe J (1992) Sweet potato an untapped food resource. Cambridge University Press, Cambridge, UKGoogle Scholar
  17. 17.
    Bovell-Benjamin AC (2007) Sweet potato: a review of its past, present and future roles in human nutrition. Adv Food Nutr Res 52:1–59CrossRefGoogle Scholar
  18. 18.
    Walter WM, Catignani GL, Yow LL, Porter DH (1983) Protein nutritional value of sweet potato flour. J Agric Food Chem 31:947–949CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Laurie SM, Van Den Berg AA, Magoro MD, Kgonyane MC (2004) Breeding of sweet potato and evaluation of imported cultivars in South Africa. Afr Crop Sci J 12:189–196Google Scholar
  21. 21.
    Leighton CS (2007) Nutrient and sensory quality of orange-fleshed sweet potato. MSc dissertation, University of Pretoria, PretoriaGoogle Scholar
  22. 22.
    Alam MK, Rana ZH, Islam SN (2016) Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods 5:64CrossRefGoogle Scholar
  23. 23.
    Sanoussi F, Adjatin A, Dansi A, Adebowale A, Sanni LO, Sanni A (2016) Mineral composition of ten elites sweet potato (Ipomoea batatas [L.] Lam.) Landraces of Benin. Int J Curr Microbiol App Sci 5:103–115CrossRefGoogle Scholar
  24. 24.
    Shafe MO, Eze ED, Ubhenin AE, Tende JA (2016) Effects of aqueous tuber extract of Ipomea batatas on cardiac enzymes, lipid profile and organ weights in Wistar rats. J Basic Appl Res 4:414–417Google Scholar
  25. 25.
    Mercy Margaret T, Krishna P, Revathi B, Eswar Tony D, Sathish Kumar M, Narendra Babu A (2013) Assessment of in vitro anti inflammatory activity of aqueous extract of Ipomoea batatas tubers. Asian J Res Biol Pharm Sci 1:47–53Google Scholar
  26. 26.
  27. 27.
    Washio M, Mori M, Sakauchi F, Watanabe Y, Ozasa K, Hayashi K et al (2005) Risk factors for kidney cancer in a Japanese population: findings from the JACC study. J Epidemiol 15:S203–S211CrossRefGoogle Scholar
  28. 28.
    Shekhar S, Mishra D, Buragohain AK, Chakraborty N (2015) Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.) Food Chem 173:957–965CrossRefGoogle Scholar
  29. 29.
    Nwosisi S, Nandwani D, Ravi R (2017) Bioactive compounds in organic sweetpotato. J Adv Mol Biol 1:81–90Google Scholar
  30. 30.
    Sucharitha M, Kotesh M, Devika K, Naresh Y, Kiran M (2016) Evaluation of diuretic activity of aqueous extract of Ipomoea batatas (L). Sch J Appl Med Sci 4:1902–1905Google Scholar
  31. 31.
    Park SY, Lee SY, Yang JW, Lee J-S, Oh S-D, Oh S, Lee SM, Lim M-H, Park SK, Jang J-S, Cho HS, Yeo Y (2016) Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers. Food Sci Biotechnol 25:283CrossRefGoogle Scholar
  32. 32.
    Oluyori PA, Olatunji GA (2016) Antimicrobial and antioxidant activity of peels’ extracts from Ipomoea Batatas L. Phytochem Anal 6:157–164Google Scholar
  33. 33.
    Rosas-Ramírez D, Pereda-Miranda R (2013) Resin glycosides from the yellow-skinned variety of sweet potato (Ipomoea batatas). J Agric Food Chem 61:9488–9494CrossRefGoogle Scholar
  34. 34.
    Kang H, Kwak Y-G, Koppula S (2014) Protective effect of purple sweet potato (Ipomoea batatas Linn, Convolvulaceae) on neuroinflammatory responses in lipopolysaccharide-stimulated microglial cells. Trop J Pharm Res 13:1257–1262CrossRefGoogle Scholar
  35. 35.
    Choi JH, Choi CY, Lee KJ, Hwang YP, Chung YC, Jeong HG (2009) Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice. J Med Food 12:320–326Google Scholar
  36. 36.
    Cuevas Montilla E, Hillebrand S, Winterhalter P (2010) Anthocyanins in purple sweet potato (Ipomoea batatas L.) varieties. Fruit Veg Cereal Sci Biotechnol 5:19–24Google Scholar
  37. 37.
    Aldi Y, Dillasamola D, Florina T, Friardi D (2016) Activity and capacity test of macrophage peritoneal cell and number leukocyte of ethanol extract purple sweet potato peel Ipomoea batatas (L.) Lam. Res J Pharm Biol Chem Sci 7:178–186Google Scholar
  38. 38.
    Jung JK, Lee SU, Kozukue N, Levin CE, Friedman M (2011) Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J Food Compos Anal 24:29–37CrossRefGoogle Scholar
  39. 39.
    Pochapski MT, Fosquiera EC, Esmerino LA, Dos Santos EB, Farago PV, Santos FA, Groppo FC (2011) Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn Mag 26:165–170Google Scholar
  40. 40.
    Hesam F, Taheri Tehrani R, Balali GR (2015) Evaluation of β-amylase activity of sweet potato (Ipomoea batatas) cultivated in Iran. J Food Biosci Technol 5:41–48Google Scholar
  41. 41.
    Wilson BJ, Yang DTC, Boyd MR (1970) Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature 227:521–522CrossRefGoogle Scholar
  42. 42.
    Clark CA, Lawrence A, Martin FA (1981) Accumulation of furanoterpenoids in sweet potato tissue following inoculation with different pathogens. Phytopathology 71:708–711CrossRefGoogle Scholar
  43. 43.
    Remya M, Subha S (2015) Production of 4-ipomeanol, an anticancer agent from the root tubers and rhizogenic callus of Ipomoea batatas Lam. – a comparative study. Indian J Exp Biol 53:297–304Google Scholar
  44. 44.
    Remya M, Subha S (2017) Optimization of process parameters for bioproduction, isolation and purification of 4-ipomeanol, an anticancer agent from cell suspension cultures of Ipomoea batatas (L.) Lam. Indian J Exp Biol 55:191–196Google Scholar
  45. 45.
  46. 46.
    Remya M, Subha S (2014) Sweet potato [Ipomoea batatas (L.) Lam.] – a valuable medicinal food: a review. J Med Food 17(7):733–741CrossRefGoogle Scholar
  47. 47.
    Boyd MR, Burka LT, Harris TM, Wilson BJ (1974) Lung-toxic furanoterpenoids produced by sweet potatoes (Ipomoea batatas) following microbial infection. Biochim Biophys Acta 337:184–195CrossRefGoogle Scholar
  48. 48.
    Boyd MR, Wilson BJ, Harris TM (1972) Confirmation by chemical synthesis of the structure of 4-ipomeanol, a lung-toxic metabolite of the sweet potato, Ipomoea batatas. Nat New Biol 236:158–159CrossRefGoogle Scholar
  49. 49.
    Krauss J, Bracher F, Unterreitmeier D (2005) A new approach towards (±)-4-ipomeanol and its 2-furyl regioisomer. Turk J Chem 29:635–639Google Scholar
  50. 50.
    Krauss J, Unterreitmeier D (2005) Synthesis of new lipophilic ipomeanol analogues and their cytotoxic activities. Arch Pharm 338:44–48CrossRefGoogle Scholar
  51. 51.
    Boyd MR, Reznik-Schuller H (1984) Metabolic basis for the pulmonary clam cells as a target for pulmonary carcinogenesis. Toxicol Rather 12:56–61CrossRefGoogle Scholar
  52. 52.
    Dutcher JS, Boyd MR (1979) Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol: predictive value of covalent binding in studies of target organ toxicities by reactive metabolites. Biochem Pharmacol 28:3367–3372CrossRefGoogle Scholar
  53. 53.
    Buckpitt AR, Statham CN, Boyd MR (1982) In vivo studies on the target tissue metabolism, covalent binding, glutathione depletion, and toxicity of 4-ipomeanol in birds, species deficient in pulmonary enzymes for metabolic activation. Toxicol Appl Pharmacol 65:38–52CrossRefGoogle Scholar
  54. 54.
    Boyd MR, Burka LT, Wilson BE (1975) Distribution, excretion and binding of radioactivity in the rat after intraperitoneal administration of the lung-toxic fur [14C] 4-ipomeanol. Toxicol Appl Pharmacol 32:147–157CrossRefGoogle Scholar
  55. 55.
    Boyd MR (1977) Evidence for the Clara cells as a site of cytochrome P450 dependent mixed function oxidase activity in lung. Nature (Land) 269:713–715CrossRefGoogle Scholar
  56. 56.
    Boyd MR, Burka LT (1978) In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. J Pharmacol Exp Ther 207:687–697Google Scholar
  57. 57.
    Serabjit-Singh CJ, Nisho SJ, Philpot RM, Plopper CG (1988) The distribution of cytochrome P450 monooxygenase in cells of the rabbit lung: an ultrastructural immunochemical characterization. Mol Pharmacol 33:279–289Google Scholar
  58. 58.
    Brooks P, Lawley PW (1964) Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature (London) 202:781–784CrossRefGoogle Scholar
  59. 59.
    Boyd MR (1980) Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation. Crit Rev Toxicol 7:103–176CrossRefGoogle Scholar
  60. 60.
    McLemore TL, Liu MC, Blacker PC, Gregg M, Alley MC, Abbotl BJ, Shoemaker RH, Bohlman ME, Liltersl CC, Hubbard WC, Brennan RH, McMahon JB, Fine DL, Eggleston JC, Mayo JG, Boyd MR (1987) Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 47:5132–5140Google Scholar
  61. 61.
    McLemore T, Coudert B, Adelberg S, Liu MC, Hubbard WC, Litters CC, Eggleston JC, Boyd MR (1988) Metabolic activation of 4-ipomeanol by human pulmonary carcinoma cells propagated in vitro and intrabronchially in nude mice. Clin Res 36:498AGoogle Scholar
  62. 62.
    Christian MC, Wittes RE, Leyland-Jones B, McLemore TL, Smith AC, Grieshaber CK, Chabner BA, Boyd MR (1989) Ipomeanol: a novel investigational new drug for lung cancer. J Natl Cancer Inst 81:1133–1143CrossRefGoogle Scholar
  63. 63.
    Buckpitt AR, Boyd MR (1982) Metabolic activation of 4-ipomeanol by avian tissue microsomes. Toxicol Appl Pharmacol 65:53–62CrossRefGoogle Scholar
  64. 64.
    Wolf CR, Statham CN, McMenamin MG et al (1982) The relationship between the catalytic activities of the lung-specific toxicity of the furan derivative, 4-ipomeanol. Mol Pharmacol 22:738–744Google Scholar
  65. 65.
    Rowinsky EK, Noe DA, Ettinger DS, Christian MC, Lubejko BG, Fishman EK, Sartorius SE, Boyd MR, Donehower RC (1993) Phase I and pharmacological study of the pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung cancer patients: hepatotoxicity is dose limiting in humans. Cancer Res 5:1794–1801Google Scholar
  66. 66.
    Kasturi VK, Dearing MP, Piscitelli SC, Russell EK, Sladek GG, O’Neil K, Turner GA, Morton TL, Christian MC, Johnson BE, Kelley MJ (1998) Phase I study of a five-day dose schedule of 4-ipomeanol in patients with non-small cell lung cancer. Clin Cancer Res 4:2095–2102Google Scholar
  67. 67.
    Lakhanpal S, Donehower RC, Rowinsky EK (2001) Phase II study of 4-ipomeanol, a naturally occurring alkylating furan, in patients with advanced hepatocellular carcinoma. Invest New Drugs 19:69–76CrossRefGoogle Scholar
  68. 68.
    Czerwinski M, McLemore TL, Philpot RM et al (1991) Metabolic activation of 4-ipomeanol by complementary DNA expressed human cytochromes P-450: evidence for species specific metabolism. Cancer Res 51:4636–4638Google Scholar
  69. 69.
    Rainov NG, Dobberstein KU, Sena-Esteves M et al (1998) New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther 9:1261–1273CrossRefGoogle Scholar
  70. 70.
    Mohr L, Rainov NG, Mohr UG, Wands JR (2000) Rabbit cytochrome P450 4B1: a novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma. Cancer Gene Ther 7:1008–1014CrossRefGoogle Scholar
  71. 71.
    Wiek C, Eva MS, Katharina R, Marcel F, Mariko N, Edward JK, Wolfgang K, Vladimir YY, Christof MK, Allan ER, Hanenberg H (2015) Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol. Biochem J 1:103–114CrossRefGoogle Scholar
  72. 72.
    Hsu H, Rainov NG, Quinones A, Eling DJ, Sakamoto KM, Spear MA (2003) Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res 23:2723–2728Google Scholar
  73. 73.
    Jang SJ, Kang JH, Lee TS, Kim SJ, Kim KI, Lee YJ, Cheon GJ, Choi CW, Lim SM (2010) Prodrug-activating gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol or 2-aminoanthracene system in glioma cells. Nucl Med Mol Imaging 44:193–198CrossRefGoogle Scholar
  74. 74.
    Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H (2016) Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 23:615–626CrossRefGoogle Scholar
  75. 75.
    Moon BS, Jang SJ, Lee TS, Chi DY, Lee BC, Kang JH, Kim SE (2013) Synthesis and evaluation of a 18F-labeled 4-ipomeanol as an imaging agent for CYP4B1 gene prodrug activation therapy. Cancer Biother Radiopharm 28:588–597CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Remya Mohanraj
    • 1
  1. 1.Houston Community CollegeHoustonUSA

Personalised recommendations