Natural Estrogenic Substances, Origins, and Effects

  • Catherine Bennetau-PelisseroEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Some natural substances have been scientifically identified as estrogenic since the late 1930s when they were found to be deleterious at high doses for cattle reproduction. Several compounds belonging to different chemical families are considered here: isoflavonoids, coumestans, lignans, and resorcylic acid lactones. This list is not exhaustive. The vegetable sources of these compounds are probably not all identified yet, but all the compounds presented here were shown to act as endocrine disruptors, i.e., modifying the hormonal natural balance, at dietary doses either in human, in cattle, or in other vertebrates.

Estrogenic compounds mimic estradiol activities and can interact nearly with all biological functions in lower and higher vertebrates. Some mollusks are also sensitive to estrogens. The effective dose is crucial to consider since as other endocrine disruptors the natural substances may have opposite effects at low, dietary, and pharmacological concentrations. Different cell pathways are triggered by the natural estrogenic substances, including some that are not influenced by estradiol itself, and this explains why their effect is not a monotonic dose–response line. This questions the classical toxicological approach which considers acute exposure (short and high concentrations) as the key of the toxicity evaluation. The history of human exposure to isoflavones was recently casted on doubt, reinforcing the need for careful study of these compounds’ occurrence and effects on humans. It is clear now that the traditional soy food makings were able to remove isoflavones from foodstuffs. This is no longer the case in modern processing, and this means that the exposure to this estrogenic substances has increased markedly in recent times. Estrogens in mammals can have both beneficial and harmful effects which are evoked here.


Natural estrogens Food sources Modern exposure Bioavailability Mechanism of actions Breast cancer Bone health Thyroid Reproductive disruption 


  1. 1.
    Fernandez-Lopez A, Lamothe V, Delample M, Denayrolles M, Bennetau-Pelissero C (2016) Removing isoflavones from modern soyfood: why and how? Food Chem 210:286–294PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hicks KD, Sullivan AW, Cao J, Sluzas E, Rebuli M, Patisaul HB (2016) Interaction of bisphenol A (BPA) and soy phytoestrogens on sexually dimorphic sociosexual behaviors in male and female rats. Horm Behav 84:121–126PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bennetau-Pelissero C (2017) Positive or negative effects of isoflavones: toward the end of a controversy: response to the letter from Dr Messina and Dr Badger following the publication of the paper by Fernandez-Lopez A, Lamothe V, Delample M, Denayrolles M and Bennetau-Pelissero C. entitled: removing isoflavones from modern soyfood: why and how? Food Chem 225:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    National Toxicology Program (2008) Multigenerational reproductive study of genistein (Cas No. 446-72-0) in Sprague-Dawley rats (feed study). Natl Toxicol Program Tech Rep Ser 539:1–266Google Scholar
  5. 5.
    Mumford SL, Kim S, Chen Z (2015) Urinary phytoestrogens are associated with subtle indicators of semen quality among male partners of couples desiring pregnancy. J Nutr 145:2535–2541PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    McClain MR, Wolz E, Davidovich A, Pfannkuch F, Edwards JA, Bausch J (2006) Acute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol 44(1):56–80CrossRefGoogle Scholar
  7. 7.
    European Centre for Ecotoxicology and Toxicology of Chemicals (2002) Guidance on evaluation of reproductive toxicity data. Monograph no. 31. Brussels. ISSN-0773-6347-31Google Scholar
  8. 8.
    Carreau S, Bouraima-Lelong H, Delalande C (2011) Estrogens: new players in spermatogenesis. Reprod Biol 11(3):174–193PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rochira V, Granata AR, Madeo B, Zirilli L, Rossi G, Carani C (2005) Estrogens in males: what have we learned in the last 10 years? Asian J Androl 7:3–20PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Katzenellenbogen JA, Katzenellebogen BS, Tatee T, Robertson DW, Landvatter SW (1980) The chemistry of estrogens and antiestrogens: relationships between structure, receptor binding and biological activity. In: McLachlan JA (ed) Estrogens in the environment. Elsevier Science, New York, p 33Google Scholar
  11. 11.
    Bennetau-Pelissero C (2013) Chapitre 77. Isoflavonoids and phytoestrogenic activity. In: Natural products 2013 phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelberg, pp 2381–2432. Scholar
  12. 12.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931PubMedCrossRefGoogle Scholar
  13. 13.
    Bhavnani BR, Tam SP, Lu X (2008) Structure activity relationships and differential interactions and functional activity of various equine estrogens mediated via estrogen receptors (ERs) ERalpha and ERbeta. Endocrinology 149(10):4857–4870PubMedCrossRefGoogle Scholar
  14. 14.
    Meitzen J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britson KA, Mermelstein PG (2013) Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 154(11):4293–4304PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Adlanmerini M, Solinhac R, Abot A, Fabre A, Raymond-Letron I, Guihot AL, Boudou F, Sautier L, Vessières E, Kim SH, Lière P, Fontaine C, Krust A, Chambon P, Katzenellenbogen JA, Gourdy P, Shaul PW, Henrion D, Arnal JF, Lenfant F (2014) Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci USA 111(2):E283–E290PubMedCrossRefGoogle Scholar
  16. 16.
    Morrill GA, Kostellow AB, Gupta RK (2015) Transmembrane helices in “classical” nuclear reproductive steroid receptors: a perspective. Nucl Recept Signal 13:e003PubMedPubMedCentralGoogle Scholar
  17. 17.
    Petrie WK, Dennis MK, Hu C, Dai D, Arterburn JB, Smith HO, Hathaway HJ, Prossnitz ER (2013) G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obstet Gynecol Int 2013:472720PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ren GY, Chen CY, Chen WG, Huang Y, Qin LQ, Chen LH (2016) The treatment effects of flaxseed-derived secoisolariciresinol diglycoside and its metabolite enterolactone on benign prostatic hyperplasia involve the G protein-coupled estrogen receptor 1. Appl Physiol Nutr Metab 41(12):1303–1310PubMedCrossRefGoogle Scholar
  19. 19.
    Prossnitz ER, Arterburn JB, Sklar LA (2007) GPR30: a G protein-coupled receptor for estrogen. Mol Cell Endocrinol 265–266:138–142PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Suetsugi M, Su L, Karlsberg K, Yuan Y-C, Chen S (2003) Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res 1:981–991PubMedGoogle Scholar
  21. 21.
    Boué SM, Burow ME, Wiese TE, Shih BY, Elliott S, Carter-Wientjes CH, McLachlan JA, Bhatnagar D (2011) Estrogenic and antiestrogenic activities of phytoalexins from red kidney bean (Phaseolus vulgaris L.) J Agric Food Chem 59(1):112–120PubMedCrossRefGoogle Scholar
  22. 22.
    Kim HJ, Suh HJ, Kim JH, Kang SC, Park S, Lee CH, Kim JS (2010) Estrogenic activity of glyceollins isolated from soybean elicited with Aspergillus sojae. J Med Food 13(2):382–390PubMedCrossRefGoogle Scholar
  23. 23.
    Lindner HR (1976) Occurrence of anabolic agents in plants and their importance. Qual Saf Suppl 5:151Google Scholar
  24. 24.
    Song T, Barua K, Buseman G, Murphy PA (1998) Rapid simultaneous determination of major isoflavones of Pueraria lobata and discriminative analysis of its geographical origins by principal component analysis. Am J Clin Nutr 68:1474SPubMedCrossRefGoogle Scholar
  25. 25.
    Zhao C, Chan HY, Yuan D, Liang Y, Lau TY, Chau FT (2011) Rapid simultaneous determination of major isoflavones of Pueraria lobata and discriminative analysis of its geographical origins by principal component analysis. Phytochem Anal 22(6):503PubMedCrossRefGoogle Scholar
  26. 26.
    He X, Blount JW, Ge S, Tang Y, Dixon RA (2011) A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). Planta 233(4):843PubMedCrossRefGoogle Scholar
  27. 27.
    Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agric Food Chem 55(20):7981PubMedCrossRefGoogle Scholar
  28. 28.
    Keinan-Boker L, Van der Schouw YT, De Kleijn MJJ, Jacques PF, Diederick E, Grobbee DE, Peeters PHM (2002) J Nutr 132:1319CrossRefGoogle Scholar
  29. 29.
    Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HS (1975) Potential value of plants as sources of new antifertility agents I. J Pharm Sci 64(4):535–598PubMedCrossRefGoogle Scholar
  30. 30.
    Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HS (1975) Potential value of plants as sources of new antifertility agents II. J Pharm Sci 64(5):717–754PubMedCrossRefGoogle Scholar
  31. 31.
    Horn-Ross PL, Barnes S, Lee M, Coward L, Mandel JE, Koo J, John EM, Smith M (2000) Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control 11(4):289–298PubMedCrossRefGoogle Scholar
  32. 32.
    Franke AA, Custer LJ (1994) High-performance liquid chromatographic assay of isoflavonoids and coumestrol from human urine. J Chromatogr B Biomed Appl 662(1):47–60PubMedCrossRefGoogle Scholar
  33. 33.
    Knuckles BE, deFremery D, Kohler GO (1976) Coumestrol content of fractions obtained during wet processing of alfalfa. J Agric Food Chem 24(6):1177–1180PubMedCrossRefGoogle Scholar
  34. 34.
    Valsta LM, Kilkkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P (2003) Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr 89(Suppl 1):S31–S38PubMedGoogle Scholar
  35. 35.
    Adlercreutz H, Mazur W (1997) Phyto-oestrogens and western diseases. Ann Med 29:95–120PubMedCrossRefGoogle Scholar
  36. 36.
    USDA-Iowa State University Isoflavones Database.
  37. 37.
    Fletcher RJ (2003) Food sources of phytoestrogens and their precursors in Europe. Br J Nutr 89(1):S39–S43PubMedCrossRefGoogle Scholar
  38. 38.
    Pillow PC, Duphorne CM, Chang S, Contois JH, Strom SS, Spitz MR, Hursting SD (1999) Development of a database for assessing dietary phytoestrogen intake. Nutr Cancer 33:3–19PubMedCrossRefGoogle Scholar
  39. 39.
    Francis CM, Millington AJ (1971) Presence of methylated coumestans in annual Medicago species; response to a fungal pathogen. Aust J Agric Res 22:75–80CrossRefGoogle Scholar
  40. 40.
    Li Y, Luh CJ, Burns KA, Arao Y, Jiang Z, Teng CT, Tice RR, Korach KS (2013) Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect 121(4):459–466PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mallis LM, Sarkahian AB, Harris HA, Zhang MY, McConnell OJ (2003) Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 796(1):71–86PubMedCrossRefGoogle Scholar
  42. 42.
    Bickoff EM, Loper GM, Hanson CH, Graham JH, Witt SC, Spencer RR (1967) Effect of common leafspot on coumestans and flavones in alfalfa. Crop Sci 7(3):259–261CrossRefGoogle Scholar
  43. 43.
    Wong E, Latch GCM (1971) Effect of fungal diseases on phenolic contents of white clover. NZ J Agric Res 14(3):633–638CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Carreau C, Flouriot G, Bennetau-Pelissero C, Potier M (2008) Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells. J Steroid Biochem Mol Biol 110(1–2):176–185PubMedCrossRefGoogle Scholar
  46. 46.
    Moreno-Franco B, García-González Á, Montero-Bravo AM, Iglesias-Gutiérrez E, Úbeda N, Maroto-Núñez L, Adlercreutz H, Peñalvo JL (2011) Dietary alkylresorcinols and lignans in the Spanish diet: development of the alignia database. J Agric Food Chem 59(18):9827–9834PubMedCrossRefGoogle Scholar
  47. 47.
    Pianjing P, Thiantanawat A, Rangkadilok N, Watcharasit P, Mahidol C, Satayavivad J (2011) Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells. J Agric Food Chem 59(1):212–221PubMedCrossRefGoogle Scholar
  48. 48.
    Nicolle C, Manach C, Morand C, Mazur W, Adlercreutz H, Rémésy C, Scalbert A (2002) Mammalian lignan formation in rats fed a wheat bran diet. J Agric Food Chem 50(21):6222–6226PubMedCrossRefGoogle Scholar
  49. 49.
    Peñalvo JL, Adlercreutz H, Uehara M, Ristimaki A, Watanabe S (2008) Lignan content of selected foods from Japan. J Agric Food Chem 56(2):401–409PubMedCrossRefGoogle Scholar
  50. 50.
    Bhatnagar D, Yu J, Ehrlich KC (2002) Toxins of filamentous fungi. Chem Immunol 81:167–206PubMedCrossRefGoogle Scholar
  51. 51.
    Stob M, Baldwin RS, Tuite J, Andrews FN, Gillette KG (1962) Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature 196:1318PubMedCrossRefGoogle Scholar
  52. 52.
    Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9:2062–2090PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Castelo MM, Sumner SS, Bullerman LB (1998) Stability of fumonisins in thermally processed corn products. J Food Prot 161:1030–1033CrossRefGoogle Scholar
  54. 54.
    EFSA Panel on Contaminants in the Food Chain (2011) Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 9(6):2197–2421CrossRefGoogle Scholar
  55. 55.
    Kuhnle GG, Dell’Aquila C, Aspinall SM, Runswick SA, Mulligan AA, Bingham SA (2008) Phytoestrogen content of foods of animal origin: dairy products, eggs, meat, fish, and seafood. J Agric Food Chem 56(21):10099–10104PubMedCrossRefGoogle Scholar
  56. 56.
    Liu Z, Li W, Sun J, Liu C, Zeng Q, Huang J, Yu B, Huo J (2004) Intake of soy foods and soy isoflavones by rural adult women in China. Asia Pac J Clin Nutr 13(2):204–209PubMedGoogle Scholar
  57. 57.
    Cassidy A, Bingham S, Setchell KD (1994) Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 60(3):333–340PubMedCrossRefGoogle Scholar
  58. 58.
    Wada K, Tsuji M, Tamura T, Konishi K, Kawachi T, Hori A, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C (2015) Soy isoflavone intake and stomach cancer risk in Japan: from the Takayama study. Int J Cancer 137(4):885–892PubMedCrossRefGoogle Scholar
  59. 59.
    Surh J, Kim M-J, Koh E, Young-Kyung L, Kim Y-KL, Kwon H (2009) Estimated intakes of isoflavones and coumestrol in Korean population. Int J Food Sci Nutr 57(5–6):325–344Google Scholar
  60. 60.
    Hu XJ, Song WR, Gao LY, Nie SP, Eisenbrand G, Xie MY (2014) Assessment of dietary phytoestrogen intake via plant-derived foods in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(8):1325–1335PubMedCrossRefGoogle Scholar
  61. 61.
    Agence française de sécurité sanitaire des aliments (2005) Sécurité et bénéfices des phyto-estrogènes apportés par l’alimentation: recommandations. Publisher, AFSSA, 2005. ISBN, 2110954434, 9782110954435, 440 pagesGoogle Scholar
  62. 62.
    Carmichael SL, Gonzalez-Feliciano AG, Ma C, Shaw GM, Cogswell ME (2011) Estimated dietary phytoestrogen intake and major food sources among women during the year before pregnancy. Nutr J 10:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bai W, Wang C, Ren C (2014) Intakes of total and individual flavonoids by US adults. Int J Food Sci Nutr 65(1):9–20PubMedCrossRefGoogle Scholar
  64. 64.
    Fleck SC, Churchwell MI, Doerge DR, Teeguarden JG (2016) Urine and serum biomonitoring of exposure to environmental estrogens II: soy isoflavones and zearalenone in pregnant women. Food Chem Toxicol 95:19–27PubMedCrossRefGoogle Scholar
  65. 65.
    Berman T, Goldsmith R, Göen T, Spungen J, Novack L, Levine H, Amitai Y, Shohat T, Grotto I (2013) Urinary concentrations of environmental contaminants and phytoestrogens in adults in Israel. Environ Int 59:478–484PubMedCrossRefGoogle Scholar
  66. 66.
    Degen GH, Blaszkewicz M, Shi L, Buyken AE, Remer T (2011) Urinary isoflavone phytoestrogens in German children and adolescents–a longitudinal examination in the DONALD cohort. Mol Nutr Food Res 55(3):359–367PubMedCrossRefGoogle Scholar
  67. 67.
    Badger TM, Ronis MJ, Hakkak R, Rowlands JC, Korourian S (2002) The health consequences of early soy consumption. J Nutr 132(3):559S–565SPubMedCrossRefGoogle Scholar
  68. 68.
    McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, Hoyer P, Leeder JS, Peters JM, Rissman E, Rybak M, Sherman C, Toppari J, Turner K (2011) NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. Birth Defects Res B Dev Reprod Toxicol 92(5):421–468PubMedCrossRefGoogle Scholar
  69. 69.
    Hoey L, Rowland IR, Lloyd AS, Clarke DB, Wiseman H (2004) Influence of soya-based infant formula consumption on isoflavone and gut microflora metabolite concentrations in urine and on faecal microflora composition and metabolic activity in infants and children. Br J Nutr 91(4):607–616PubMedCrossRefGoogle Scholar
  70. 70.
    Irvine CH, Shand N, Fitzpatrick MG, Alexander SL (1998) Daily intake and urinary excretion of genistein and daidzein by infants fed soy- or dairy-based infant formulas. Am J Clin Nutr 68(Suppl 6):1462S–1465SPubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Genovese MI, Lajolo FM (2002) Isoflavones in soy-based foods consumed in Brazil: levels, distribution, and estimated intake. J Agric Food Chem 50(21):5987–5993PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Fonseca ND, Villar MP, Donangelo CM, Perrone D (2014) Isoflavones and soyasaponins in soy infant formulas in Brazil: profile and estimated consumption. Food Chem 143:492–498PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bennetau-Pelissero C, Sauvant P, Peltre G, Auriol P, Rocca A, Rancé F (2004) Phyto-oestrogènes du soja: problèmes posés chez le nourrisson allergique au lait de vache et consommant des formules à base de soja. Cah Nutr Diét 39(1):24–32CrossRefGoogle Scholar
  74. 74.
    Petrakis NL, Barnes S, King EB, Lowenstein J, Wiencke J, Lee MM, Miike R, Kirk M, Coward L (1996) Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol Biomark Prev 5(10):785–794Google Scholar
  75. 75.
    McMichael-Phillips DF, Harding C, Morton M, Roberts SA, Howell A, Potten CS, Bundred NJ (1998) Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. Am J Clin Nutr 68(Suppl 6):1431S–1435SPubMedCrossRefGoogle Scholar
  76. 76.
    Hargreaves DF, Potten CS, Harding C, Shaw LE, Morton MS, Roberts SA, Howell A, Bundred NJ (1999) Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast. J Clin Endocrinol Metab 84(11):4017–4024PubMedGoogle Scholar
  77. 77.
    Nagata C, Takatsuka N, Inaba S, Kawakami N, Shimizu H (1998) Effect of soymilk consumption on serum estrogen concentrations in premenopausal Japanese women. J Natl Cancer Inst 90(23):1830–1835PubMedCrossRefGoogle Scholar
  78. 78.
    Chavarro JE, Toth TL, Sadio SM, Hauser R (2008) Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. Hum Reprod 23(11):2584–2590PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Toshima H, Suzuki Y, Imai K, Yoshinaga J, Shiraishi H, Mizumoto Y, Hatakeyama S, Onohara C, Tokuoka S (2012) Endocrine disrupting chemicals in urine of Japanese male partners of subfertile couples: a pilot study on exposure and semen quality. Int J Hyg Environ Health 215(5):502–506PubMedCrossRefGoogle Scholar
  80. 80.
    Xia Y, Chen M, Zhu P, Lu C, Fu G, Zhou X, Chen D, Wang H, Hang B, Wang S, Zhou Z, Sha J, Wang X (2013) Urinary phytoestrogen levels related to idiopathic male infertility in Chinese men. Environ Int 59:161–167PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Clarke DB, Lloyd AS, Lawrence JM, Brown JE, Storey L, Raats M, Rainsbury RM, Culliford DJ, Bailey-Horne VA, Parry BM (2013) Development of a food compositional database for the estimation of dietary intake of phyto-oestrogens in a group of postmenopausal women previously treated for breast cancer and validation with urinary excretion. Br J Nutr 109(12):2261–2268PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Anses working group (2011) Étude de l’alimentation totale française 2 (EAT 2) Tome 1 Contaminants inorganiques, minéraux, polluants rganiques persistants, mycotoxines, phyto-estrogènes. Anses Edition Scientifique. 346 pagesGoogle Scholar
  83. 83.
    EFSA (2009) Opinion on the safety of ‘Alfalfa protein concentrate’ as food. EFSA J 997:1–19Google Scholar
  84. 84.
    Zamora-Ros R, Knaze V, Luján-Barroso L, Kuhnle GG, Mulligan AA, Touillaud M, Slimani N, Romieu I, Powell N, Tumino R, Peeters PH, de Magistris MS, Ricceri F, Sonestedt E, Drake I, Hjartåker A, Skie G, Mouw T, Wark PA, Romaguera D, Bueno-de-Mesquita HB, Ros M, Molina E, Sieri S, Quirós JR, Huerta JM, Tjønneland A, Halkjær J, Masala G, Teucher B, Kaas R, Travis RC, Dilis V, Benetou V, Trichopoulou A, Amiano P, Ardanaz E, Boeing H, Förster J, Clavel-Chapelon F, Fagherazzi G, Perquier F, Johansson G, Johansson I, Cassidy A, Overvad K, González CA (2012) Dietary intakes and food sources of phytoestrogens in the European prospective investigation into cancer and nutrition (EPIC) 24-hour dietary recall cohort. Eur J Clin Nutr 66(8):932–941PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kuijsten A, Arts IC, van’t Veer P, Hollman PC (2005) The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J Nutr 135(12):2812–2816PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kunisue T, Tanabe S, Isobe T, Aldous KM, Kannan K (2010) Profiles of phytoestrogens in human urine from several Asian countries. J Agric Food Chem 58(17):9838–9846PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Grace PB, Taylor JI, Low YL, Luben RN, Mulligan AA, Botting NP, Dowsett M, Welch AA, Khaw KT, Wareham NJ, Day NE, Bingham SA (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomark Prev 13(5):698–708Google Scholar
  88. 88.
    Jin JS, Hattori M (2010) Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism. Biol Pharm Bull 33(8):1443–1447PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Mally A, Solfrizzo M, Degen GH (2016) Biomonitoring of the mycotoxin Zearalenone: current state-of-the art and application to human exposure assessment. Arch Toxicol 90(6):1281–1292PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Tahara S, Ingham JL, Nakahara S, Mizutani J, Harborne JB (1984) Fungitoxic dihydrofuranoisoflavones and related compounds in white lupin, Lupinus albus. Phytochemistry 23:1889–1900CrossRefGoogle Scholar
  91. 91.
    Garcez WS, Martins D, Garcez FR, Marques MR, Pereira AA, Oliveira LA, Rondon JN, Peruca AD (2000) Effect of spores of saprophytic fungi on phytoalexin accumulation in seeds of frog-eye leaf spot and stem canker-resistant and -susceptible soybean (Glycine max L.) cultivars. J Agric Food Chem 48:3662–3665PubMedCrossRefGoogle Scholar
  92. 92.
    Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gagnon H, Grandmaison J, Ibrahim RK (1995) Phytochemical and immunocytochemical evidence for the accumulation of 2′-hydroxylupalbigenin in lupin nodules and bacteroids. Mol Plant-Microbe Interact 8:131–137CrossRefGoogle Scholar
  94. 94.
    Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiol 108(3):961–968PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bennett JO, Yu O, Heatherly LG, Krishnan HB (2004) Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J Agric Food Chem 52:7574–7579PubMedCrossRefGoogle Scholar
  96. 96.
    Rossiter RC (1969) Physiological and ecological studies on the oestrogenic isoflavones in subterranean clover (T. subterraneum L.) VII. Effects of nitrogen supply. Aust J Agric Res 20(6):1043–1051CrossRefGoogle Scholar
  97. 97.
    Mebrahtu T, Mohamed A, Wang CY, Andebrhan T (2004) Analysis of isoflavone contents in vegetable soybeans. Plant Foods Hum Nutr 59:55–61PubMedCrossRefGoogle Scholar
  98. 98.
    Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA (2004) Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol 2004:52–60PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Vyn TJ, Yin X, Bruulsema TW, Jackson CJ, Rajcan I, Brouder SM (2002) Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.] J Agric Food Chem 50:3501–3506PubMedCrossRefGoogle Scholar
  100. 100.
    Jiang ZY, Jiang SQ, Lin YC, Xi PB, Yu DQ, Wu TX (2007) Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult Sci 86(7):1356–1362PubMedCrossRefGoogle Scholar
  101. 101.
    Zhao XH, Yang ZQ, Bao LB, Wang CY, Zhou S, Gong JM, Fu CB, Xu LJ, Liu CJ, Qu M (2015) Daidzein enhances intramuscular fat deposition and improves meat quality in finishing steers. Exp Biol Med (Maywood) 240(9):1152–1157CrossRefGoogle Scholar
  102. 102.
    Liu DY, He SJ, Liu SQ, Tang YG, Jin EH, Chen HL, Li SH, Zhong LT (2014) Daidzein enhances immune function in late lactation cows under heat stress. Anim Sci J 85(1):85–89PubMedCrossRefGoogle Scholar
  103. 103.
    Gagnon N, Côrtes C, da Silva D, Kazama R, Benchaar C, dos Santos G, Zeoula L, Petit HV (2009) Ruminal metabolism of flaxseed (Linum usitatissimum) lignans to the mammalian lignan enterolactone and its concentration in ruminal fluid, plasma, urine and milk of dairy cows. Br J Nutr 102(7):1015–1023PubMedCrossRefGoogle Scholar
  104. 104.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333PubMedCrossRefGoogle Scholar
  105. 105.
    Roepke TA, Bosch MA, Rick EA, Lee B, Wagner EJ, Seidlova-Wuttke D, Wuttke W, Scanlan TS, Rønnekleiv OK, Kelly MJ (2010) Contribution of a membrane estrogen receptor to the estrogenic regulation of body temperature and energy homeostasis. Endocrinology 151(10):4926–4937PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Archer DF, Sturdee DW, Baber R, de Villiers TJ, Pines A, Freedman RR, Gompel A, Hickey A, Hunter MS, Lobo RA, Lumsden MA, MacLennan AH, Maki P, Palacios S, Shah SD, Villaseca P, Warren M (2011) Menopausal hot flushes and night sweats: where are we now? Climacteric 14:515–528PubMedCrossRefGoogle Scholar
  107. 107.
    Chen MN, Lin CC, Liu CF (2015) Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric 18(2):260–269PubMedCrossRefGoogle Scholar
  108. 108.
    Thompson LU, Boucher BA, Cotterchio M, Kreiger N, Liu Z (2007) Dietary phytoestrogens, including isoflavones, lignans, and coumestrol, in nonvitamin, nonmineral supplements commonly consumed by women in Canada. Nutr Cancer 59(2):176–184PubMedCrossRefGoogle Scholar
  109. 109.
    Ferrari A (2009) Soy extract phytoestrogens with high dose of isoflavones for menopausal symptoms. J Obstet Gynaecol Res 35(6):1083–1090PubMedCrossRefGoogle Scholar
  110. 110.
    Gold EB, Leung K, Crawford SL, Huang MH, Waetjen LE, Greendale GA (2013) Phytoestrogen and fiber intakes in relation to incident vasomotor symptoms: results from the study of Women’s Health Across the Nation. Menopause 20(3):305–314PubMedPubMedCentralGoogle Scholar
  111. 111.
    Dodin S, Lemay A, Jacques H, Légaré F, Forest JC, Mâsse B (2005) The effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women: a randomized, double-blind, wheat germ placebo-controlled clinical trial. J Clin Endocrinol Metab 90:1390–1397PubMedCrossRefGoogle Scholar
  112. 112.
    Lewis JE, Nickell LA, Thompson LU, Szalai JP, Kiss A, Hilditch JR (2006) A randomized controlled trial of the effect of dietary soy and flaxseed muffins on quality of life and hot flashes during menopause. Menopause 13:631–642PubMedCrossRefGoogle Scholar
  113. 113.
    Simbalista RL, Sauerbronn AV, Aldrighi JM, Arêas JA (2010) Consumption of a flaxseed-rich food is not more effective than a placebo in alleviating the climacteric symptoms of postmenopausal women. J Nutr 140:293–297PubMedCrossRefGoogle Scholar
  114. 114.
    Lucas EA, Wild RD, Hammond LJ, Khalil DA, Juma S, Daggy BP, Stoecker BJ, Arjmandi BH (2002) Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. J Clin Endocrinol Metab 87:1527–1532PubMedCrossRefGoogle Scholar
  115. 115.
    Colli MC, Bracht A, Soares AA, de Oliveira AL, Bôer CG, de Souza CG, Peralta RM (2012) Evaluation of the efficacy of flaxseed meal and flaxseed extract in reducing menopausal symptoms. J Med Food 15(9):840–845PubMedCrossRefGoogle Scholar
  116. 116.
    Pruthi S, Qin R, Terstreip SA, Liu H, Loprinzi CL, Shah TR, Tucker KF, Dakhil SR, Bury MJ, Carolla RL, Steen PD, Vuky J, Barton DL (2012) A phase III, randomized, placebo-controlled, double-blind trial of flaxseed for the treatment of hot flashes: North Central Cancer Treatment Group N08C7. Menopause 19(1):48–53PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Clavel T, Doré J, Blaut M (2006) Bioavailability of lignans in human subjects. Nutr Res Rev 9(2):187–196CrossRefGoogle Scholar
  118. 118.
    Taku K, Melby MK, Takebayashi J, Mizuno S, Ishimi Y, Omori T, Watanabe S (2010) Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr 19(1):33–42PubMedGoogle Scholar
  119. 119.
    Liu J, Ho SC, Su YX, Chen WQ, Zhang CX, Chen YM (2009) Effect of long-term intervention of soy isoflavones on bone mineral density in women: a meta-analysis of randomized controlled trials. Bone 44(5):948–953PubMedCrossRefGoogle Scholar
  120. 120.
    Dodge JA, Glasebrook AL, Magee DE, Phillips DL, Sato M, Short LL, Bryant HU (1996) Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J Steroid Biochem Mol Biol 59(2):155–161PubMedCrossRefGoogle Scholar
  121. 121.
    Kanno S, Hirano S, Kayama F (2004) Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts. Toxicology 203(1–3):211–220PubMedCrossRefGoogle Scholar
  122. 122.
    Kanno S, Hirano S, Kayama F (2004) Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology 196(1–2):137–145PubMedCrossRefGoogle Scholar
  123. 123.
    Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J (2016) The effects of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. J Bone Miner Metab 34(2):151–160PubMedCrossRefGoogle Scholar
  124. 124.
    Abdelhamid AM, Kelada IP, Ali MM, el-Ayouty SA (1992) Influence of zearalenone on some metabolic, physiological and pathological aspects of female rabbits at two different ages. Arch Tierernahr 42(1):63–70PubMedCrossRefGoogle Scholar
  125. 125.
    Zong S, Wei B, Xiong C, Zhao Y, Zeng G (2012) The role of α-zearalanol in reversing bone loss induced by ovarian hormone deficiency in rats. J Bone Miner Metab 30(2):136–143PubMedCrossRefGoogle Scholar
  126. 126.
    Ayed Y, Ayed-Boussema I, Ouanes Z, Bacha H (2011) In vivo and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: comparison with zearalenone. Mutat Res 726(1):42–46PubMedCrossRefGoogle Scholar
  127. 127.
    Kodell RL, Gaylor DW (1999) Combining uncertainty factors in deriving human exposure levels of noncarcinogenic toxicants. Ann N Y Acad Sci 895:188–195PubMedCrossRefGoogle Scholar
  128. 128.
    Hendrich S (2009) Chapter 17 Phytoestrogens and phytosterols In endocrine disrupting chemicals in food. I Shaw Edt. Elsevier, Woodhead Publishing Series in Food Science, Technology and Nutrition. Copyright © 2009 Woodhead Publishing Limited. pp 437–458.
  129. 129.
    Galey FD, Mendez LE, Whitehead WE, Holstege DM, Plumlee KH, Johnson B (1993) Estrogenic activity in forages: diagnostic use of the classical mouse uterine bioassay. J Vet Diagn Investig 5(4):603–608CrossRefGoogle Scholar
  130. 130.
    Greendale GA, Huang MH, Leung K, Crawford SL, Gold EB, Wight R, Waetjen E, Karlamangla AS (2012) Dietary phytoestrogen intakes and cognitive function during the menopausal transition: results from the Study of Women’s Health Across the Nation Phytoestrogen Study. Menopause 19(8):894–903PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Tou JC, Chen J, Thompson LU (1998) Flaxseed and its lignan precursor, secoisolariciresinol diglycoside, affect pregnancy outcome and reproductive development in rats. J Nutr 128(11):1861–1868PubMedCrossRefGoogle Scholar
  132. 132.
    McCann SE, Hootman KC, Weaver AM, Thompson LU, Morrison C, Hwang H, Edge SB, Ambrosone CB, Horvath PJ, Kulkarni SA (2012) Dietary intakes of total and specific lignans are associated with clinical breast tumor characteristics. J Nutr 142(1):91–98PubMedCrossRefGoogle Scholar
  133. 133.
    Yang R, Wang YM, Zhang L, Zhao ZM, Zhao J, Peng SQ (2016) Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol Cell Endocrinol 437:62–74PubMedCrossRefGoogle Scholar
  134. 134.
    Maragos CM (2010) Zearalenone occurrence and human exposure. World Mycotoxin J 3(4):369–383CrossRefGoogle Scholar
  135. 135.
    Kuiper-Goodman T, Scott PM, Watanabe H (1987) Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7(3):253–306PubMedCrossRefGoogle Scholar
  136. 136.
    JEFCA panel: Eriksen GS, Pennington J, Schlatter J, Alexander J, Thuvander A (2000) Safety evaluation of certain food additives and contaminants 53rd report. Who Food Additives Series: 44Google Scholar
  137. 137.
    Lindner HR (1967) Study of the fate of phyto-oestrogens in the sheep by determination of isoflavones and coumestrol in the plasma and adipose tissue. Aust J Agric Res 18:305–333CrossRefGoogle Scholar
  138. 138.
    Shutt DA (1967) Interraction of genistein with estradiol in the reproductive tract of the ovariectomized mouse. J Endocrinol 37:231–232PubMedCrossRefGoogle Scholar
  139. 139.
    Shutt DA, Braden AWH (1968) The significance of equol in relation to the estrogenic responses in sheep ingesting clover with a high formononetin content. Aust J Agric Res 19:545–553CrossRefGoogle Scholar
  140. 140.
    Leavitt WW, Meismer DM (1968) Sexual development altered by non-steroidal œstrogens. Nature 218:181–182PubMedCrossRefGoogle Scholar
  141. 141.
    Shutt DA, Cox RI (1972) Steroid and phyto-estrogen binding to sheep uterine receptors in vivo. J Endocrinol 52:299–310PubMedCrossRefGoogle Scholar
  142. 142.
    Findlay JK, Buckmaster JM, Chamley WA, Cumming IA, Hearnshaw H, Goding JR (1973) Release of luteinising hormone by œstradiol 17β and a gonadotrophin-releasing hormone in ewes affected with clover disease. Neuroendocrinology 11:57–66PubMedCrossRefGoogle Scholar
  143. 143.
    Setchell KDR, Gosselin SJ, Welsh MB, Johnston JO, Balisteri WF, Kramer LW, Dresser BL, Tarr MJ (1987) Dietary estrogens. A probable cause of infertility and liver disease in captive cheetahs. Gastroenterology 93:225–233PubMedCrossRefGoogle Scholar
  144. 144.
    Pelissero C, Le Menn F, Kaushik S (1991) Estrogenic effect of dietary soya bean meal on vitellogenesis in cultured Siberian sturgeon Acipencer baeri. Gen Comp Endocrinol 83:447–457PubMedCrossRefGoogle Scholar
  145. 145.
    Piotrowska KK, Woclawek-Potocka I, Bah MM, Piskula MK, Pilawski W, Bober A, Skarzynski DJ (2006) Phytoestrogens and their metabolites inhibit the sensitivity of the bovine corpus luteum to luteotropic factors. J Reprod Dev 52(1):33–41PubMedCrossRefGoogle Scholar
  146. 146.
    Cools S, Van den Broeck W, Vanhaecke L, Heyerick A, Bossaert P, Hostens M, Opsomer G (2014) Feeding soybean meal increases the blood level of isoflavones and reduces the steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone concentrations. Anim Reprod Sci 144(3–4):79–89PubMedCrossRefGoogle Scholar
  147. 147.
    Hashem NM, El-Azrak KM, Sallam SM (2016) Hormonal concentrations and reproductive performance of Holstein heifers fed Trifolium alexandrinum as a phytoestrogenic roughage. Anim Reprod Sci 170:121–127PubMedCrossRefGoogle Scholar
  148. 148.
    Mlynarczuk J, Wrobel MH, Kotwica J (2011) The adverse effect of phytoestrogens on the synthesis and secretion of ovarian oxytocin in cattle. Reprod Domest Anim 46(1):21–28PubMedCrossRefGoogle Scholar
  149. 149.
    Woclawek-Potocka I, Bah MM, Korzekwa A, Piskula MK, Wiczkowski W, Depta A, Skarzynski DJ (2005) Soybean-derived phytoestrogens regulate prostaglandin secretion in endometrium during cattle estrous cycle and early pregnancy. Exp Biol Med (Maywood) 230(3):189–199CrossRefGoogle Scholar
  150. 150.
    Wong CK, Keung WM (1999) Bovine adrenal 3beta-hydroxysteroid dehydrogenase (E.C. 1.1.1. 145)/5-ene-4-ene isomerase (E.C. characterization and its inhibition by isoflavones. J Steroid Biochem Mol Biol 71(5–6):191–202PubMedCrossRefGoogle Scholar
  151. 151.
    Zhao R, Wang Y, Zhou Y, Ni Y, Lu L, Grossmann R, Chen J (2004) Dietary daidzein influences laying performance of ducks (Anas platyrhynchos) and early post-hatch growth of their hatchlings by modulating gene expression. Comp Biochem Physiol A Mol Integr Physiol 138(4):459–466PubMedCrossRefGoogle Scholar
  152. 152.
    Pelissero C, Bennetau B, Babin P, Le Menn F, Dunogues J (1991) The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J Steroid Biochem Mol Biol 38(3):293–299PubMedCrossRefGoogle Scholar
  153. 153.
    Bennetau-Pelissero C, Breton BB, Bennetau B, Corraze G, Le Menn F, Davail-Cuisset B, Helou C, Kaushik SJ (2001) Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 121(2):173–187PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Latonnelle K, Le Menn F, Kaushik SJ, Bennetau-Pelissero C (2002) Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and Siberian sturgeon: interests and limits of the in vitro studies of interspecies differences. Gen Comp Endocrinol 126(1):39–51PubMedCrossRefGoogle Scholar
  155. 155.
    Bagheri T, Imanpoor MR, Jafari V, Bennetau-Pelissero C (2013) Reproductive impairment and endocrine disruption in goldfish by feeding diets containing soybean meal. Anim Reprod Sci 139(1–4):136–144PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Green CC, Kelly AM (2009) Effects of the estrogen mimic genistein as a dietary component on sex differentiation and ethoxyresorufin-O-deethylase (EROD) activity in channel catfish (Ictalurus punctatus). Fish Physiol Biochem 35(3):377–384PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Pinto PIS, Estêvão MD, Andrade A, Santos S, Power DM (2016) Tissue responsiveness to estradiol and genistein in the sea bass liver and scale. J Steroid Biochem Mol Biol 158:127–137PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Malison JA, Lima LC, Yuliana, Barry TP, Held JA (2005) Effects of genistein on growth, development and reproduction of rainbow trout Onchorynchus mykiss and Atlantic Salmon.
  159. 159.
    Leavitt WW, Wright PA (1965) The plant estrogen, coumestrol, as an agent affecting hypophysial gonadotrophic function. J Exp Zool 160:319–328PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Reed KFM (2016) Fertility of herbivores consuming phytoestrogen-containing Medicago and Trifolium species. Agriculture 6:35–64CrossRefGoogle Scholar
  161. 161.
    Adams NR (1995) Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci 73(5):1509–1515PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Młynarczuk J, Wróbel MH, Kotwica J (2013) Adverse influence of coumestrol on secretory function of bovine luteal cells in the first trimester of pregnancy. Environ Toxicol 28(7):411–418PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Ferreira-Dias G, Botelho M, Zagrajczuk A, Rebordão MR, Galvão AM, Bravo PP, Piotrowska-Tomala K, Szóstek AZ, Wiczkowski W, Piskula M, Fradinho MJ, Skarzynski DJ (2013) Coumestrol and its metabolite in mares’ plasma after ingestion of phytoestrogen-rich plants: potent endocrine disruptors inducing infertility. Theriogenology 80(6):684–692PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Perel E, Lindner HR (1970) Dissociation of uterotrophic action from implantation-inducing activity in two non-steroidal oestrogens (coumestrol and genistein). J Reprod Fertil 21(1):171–175PubMedCrossRefGoogle Scholar
  165. 165.
    Whitten PL, Naftolin F (1992) Effects of a phytoestrogen diet on estrogen-dependent reproductive processes in immature female rats. Steroids 57(2):56–61PubMedCrossRefGoogle Scholar
  166. 166.
    Whitten PL, Russell E, Naftolin F (1992) Effects of a normal, human-concentration, phytoestrogen diet on rat uterine growth. Steroids 57(3):98–106PubMedCrossRefGoogle Scholar
  167. 167.
    Whitten PL, Lewis C, Russell E, Naftolin F (1995) Potential adverse effects of phytoestrogens. J Nutr 125(Suppl 3):771S–776SPubMedGoogle Scholar
  168. 168.
    Whitten PL, Lewis C, Naftolin F (1993) A phytoestrogen diet induces the premature anovulatory syndrome in lactationally exposed female rats. Biol Reprod 49(5):1117–1121PubMedCrossRefGoogle Scholar
  169. 169.
    Whitten PL, Lewis C, Russell E, Naftolin F (1995) Phytoestrogen influences on the development of behavior and gonadotropin function. Proc Soc Exp Biol Med 208(1):82–86PubMedCrossRefGoogle Scholar
  170. 170.
    Awoniyi CA, Roberts D, Chandrashekar V, Veeramachaneni DN, Hurst BS, Tucker KE, Schlaff WD (1997) Neonatal exposure to coumestrol, a phytoestrogen, does not alter spermatogenic potential in rats. Endocrine 7(3):337–341PubMedCrossRefGoogle Scholar
  171. 171.
    Zachut M (2015) Short communication: concentrations of the mammalian lignan enterolactone in preovulatory follicles and the correlation with intrafollicular estradiol in dairy cows fed extruded flaxseed. J Dairy Sci 98(12):8814–8817PubMedCrossRefGoogle Scholar
  172. 172.
    Hallé C, Goff AK, Petit HV, Blouin R, Palin MF (2015) Effects of different n-6:n-3 fatty acid ratios and of enterolactone on gene expression and PG secretion in bovine endometrial cells. Br J Nutr 113(1):56–71PubMedCrossRefGoogle Scholar
  173. 173.
    Dehennin L, Reiffsteck A, Jondet M, Thibier M (1982) Identification and quantitative estimation of a lignan in human and bovine semen. J Reprod Fertil 66(1):305–309PubMedCrossRefGoogle Scholar
  174. 174.
    Weaver GA, Kurtz HJ, Behrens JC, Robison TS, Seguin BE, Bates FY, Mirocha CJ (1986) Effect of zearalenone on the fertility of virgin dairy heifers. Am J Vet Res 47(6):1395–1397PubMedGoogle Scholar
  175. 175.
    Shappell NW, Mostrom MS, Lenneman EM (2012) E-screen evaluation of sugar beet feedstuffs in a case of reduced embryo transfer efficiencies in cattle: the role of phytoestrogens and zearalenone. In Vitro Cell Dev Biol Anim 48(4):216–228PubMedCrossRefGoogle Scholar
  176. 176.
    Fushimi Y, Takagi M, Monniaux D, Uno S, Kokushi E, Shinya U, Kawashima C, Otoi T, Deguchi E, Fink-Gremmels J (2015) Effects of dietary contamination by zearalenone and its metabolites on serum anti-müllerian hormone: impact on the reproductive performance of breeding cows. Reprod Domest Anim 50(5):834–839PubMedCrossRefGoogle Scholar
  177. 177.
    Harwig J, Munro IC (1975) Mycotoxins of possible importance in diseases of Canadian farm animals. Can Vet J 16(5):125–141PubMedPubMedCentralGoogle Scholar
  178. 178.
    Chang K, Kurtz HJ, Mirocha CJ (1979) Effects of the mycotoxin zearalenone on swine reproduction. Am J Vet Res 40(9):1260–1267PubMedGoogle Scholar
  179. 179.
    Schoevers EJ, Santos RR, Colenbrander B, Fink-Gremmels J, Roelen BA (2012) Transgenerational toxicity of zearalenone in pigs. Reprod Toxicol 34(1):110–119PubMedCrossRefGoogle Scholar
  180. 180.
    Collins TF, Sprando RL, Black TN, Olejnik N, Eppley RM, Alam HZ, Rorie J, Ruggles DI (2006) Effects of zearalenone on in utero development in rats. Food Chem Toxicol 44(9):1455–1465PubMedCrossRefGoogle Scholar
  181. 181.
    Jacobsen BK, Jaceldo-Siegl K, Knutsen SF, Fan J, Oda K, Fraser GE (2014) Soy isoflavone intake and the likelihood of ever becoming a mother: the Adventist Health Study-2. Int J Womens Health 6:377–384PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Thibault C, Levasseur MC (2001) La reproduction chez les mammifères et l’homme. Editions Quae, Paris, 928 pagesGoogle Scholar
  183. 183.
    Jeng HA (2014) Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health 2:55–67PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Mitchell JH, Cawood E, Kinniburgh D, Provan A, Collins AR, Irvine DS (2001) Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin Sci (Lond) 100(6):613–618CrossRefGoogle Scholar
  185. 185.
    Beaton LK, McVeigh BL, Dillingham BL, Lampe JW, Duncan AM (2010) Soy protein isolates of varying isoflavone content do not adversely affect semen quality in healthy young men. Fertil Steril 94(5):1717–1722PubMedCrossRefGoogle Scholar
  186. 186.
    Casini ML, Gerli S, Unfer V (2006) An infertile couple suffering from oligospermia by partial sperm maturation arrest: can phytoestrogens play a therapeutic role? A case report study. Gynecol Endocrinol 22(7):399–401PubMedCrossRefGoogle Scholar
  187. 187.
    Skakkebaek NE (2016) A brief review of the link between environment and male reproductive health: lessons from studies of testicular germ cell cancer. Horm Res Paediatr 86(4):240–246PubMedCrossRefGoogle Scholar
  188. 188.
    Faber KA, Hughes CL (1991) The effect of neonatal exposure to diethylstylbestrol, genistein and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod 45:649–653PubMedCrossRefGoogle Scholar
  189. 189.
    Mueller JK, Heger S (2014) Endocrine disrupting chemicals affect the gonadotropin releasing hormone neuronal network. Reprod Toxicol 44:73–84PubMedCrossRefGoogle Scholar
  190. 190.
    Strom BL, Schinnar R, Ziegler EE (2001) Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA 286(7):807–814PubMedCrossRefGoogle Scholar
  191. 191.
    Gilchrist JM, Moore MB, Andres A, Estroff JA, Badger TM (2010) Ultrasonographic patterns of reproductive organs in infants fed soy formula: comparisons to infants fed breast milk and milk formula. J Pediatr 156:215–220PubMedCrossRefGoogle Scholar
  192. 192.
    Sharpe RM, Martin B, Morris K, Greig I, McKinnell C, McNeilly AS, Walker M (2002) Infant feeding with soy formula milk: effects on the testis and on blood testosterone levels in marmoset monkeys during the period of neonatal testicular activity. Hum Reprod 17(7):1692–1703PubMedCrossRefGoogle Scholar
  193. 193.
    Tan KA, Walker M, Morris K, Greig I, Mason JI, Sharpe RM (2006) Infant feeding with soy formula milk: effects on puberty progression, reproductive function and testicular cell numbers in marmoset monkeys in adulthood. Hum Reprod 21(4):896–904PubMedCrossRefGoogle Scholar
  194. 194.
    Adgent MA, Daniels JL, Edwards LJ, Siega-Riz AM, Rogan WJ (2011) Early-life soy exposure and gender-role play behavior in children. Environ Health Perspect 119(12):1811–1816PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Adgent MA, Daniels JL, Rogan WJ, Adair L, Edwards LJ, Westreich D, Maisonet M, Marcus M (2012) Early-life soy exposure and age at menarche. Paediatr Perinat Epidemiol 26(2):163–175PubMedCrossRefGoogle Scholar
  196. 196.
    Kim J, Kim S, Huh K, Kim Y, Joung H, Park M (2011) High serum isoflavone concentrations are associated with the risk of precocious puberty in Korean girls. Clin Endocrinol 75(6):831–835CrossRefGoogle Scholar
  197. 197.
    Index Mundi (2017) Korea, south demographics profile 2017. CIA World Factbook Updated on July 9, 2017.
  198. 198.
    Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA (2017) Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125(3):447–452PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Andres A, Cleves MA, Bellando JB, Pivik RT, Casey PH, Badger TM (2012) Developmental status of 1-year-old infants fed breast milk, cow’s milk formula, or soy formula. Pediatrics 129(6):1134–1140PubMedCrossRefGoogle Scholar
  200. 200.
    Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J (2013) Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol 59:129–136PubMedCrossRefGoogle Scholar
  201. 201.
    Upson K, Harmon QE, Baird DD (2016) Soy-based infant formula feeding and ultrasound-detected uterine fibroids among young African-American women with no prior clinical diagnosis of fibroids. Environ Health Perspect 124:769–775PubMedCrossRefGoogle Scholar
  202. 202.
    Chandrareddy A, Muneyyirci-Delale O, McFarlane SI, Murad OM (2008) Adverse effects of phytoestrogens on reproductive health: a report of three cases. Complement Ther Clin Pract 14(2):132–135PubMedCrossRefGoogle Scholar
  203. 203.
    Mylonas I, Jeschke U, Shabani N, Kuhn C, Kriegel S, Kupka MS, Friese K (2005) Normal and malignant human endometrium express immunohistochemically estrogen receptor alpha (ER-alpha), estrogen receptor beta (ER-beta) and progesterone receptor (PR). Anticancer Res 25(3A):1679–1686PubMedGoogle Scholar
  204. 204.
    Tica AA, Tica OS, Georgescu CV, Pirici D, Bogdan M, Ciurea T, Mogoantă SŞ, Georgescu CC, Comănescu AC, Bălşeanu TA, Ciurea RN, Osiac E, Buga AM, Ciurea ME (2016) GPER and ERα expression in abnormal endometrial proliferations. Romanian J Morphol Embryol 57(2):413–418Google Scholar
  205. 205.
    Cavallini A, Dinaro E, Giocolano A, Caringella AM, Ferreri R, Tutino V, Loverro G (2008) Estrogen receptor (ER) and ER-related receptor expression in normal and atrophic human vagina. Maturitas 59(3):219–225PubMedCrossRefGoogle Scholar
  206. 206.
    Mylonas I, Jeschke U, Shabani N, Kuhn C, Kunze S, Dian D, Friedl C, Kupka MS, Friese K (2007) Steroid receptors ERα, ERβ, PR-A and PR-B are differentially expressed in normal and atrophic human endometrium. Histol Histopathol 22:169–176PubMedGoogle Scholar
  207. 207.
    Liu J, Yuan F, Gao J, Shan B, Ren Y, Wang H, Gao Y (2016) Oral isoflavone supplementation on endometrial thickness: a meta-analysis of randomized placebo-controlled trials. Oncotarget 7(14):17369–17379PubMedPubMedCentralGoogle Scholar
  208. 208.
    Lima SM, Yamada SS, Reis BF, Postigo S, Galvão da Silva MA, Aoki T (2013) Effective treatment of vaginal atrophy with isoflavone vaginal gel. Maturitas 74(3):252–258PubMedCrossRefGoogle Scholar
  209. 209.
    Watanabe S, Terashima K, Sato Y, Arai S, Eboshida A (2000) Effects of isoflavone supplement on healthy women. Biofactors 12(1–4):233–241PubMedCrossRefGoogle Scholar
  210. 210.
    Tang R, Chen M, Zhou K, Chen D, Yu J, Hu W, Song L, Hang B, Wang X, Xia Y (2015) Prenatal lignan exposures, pregnancy urine estrogen profiles and birth outcomes. Environ Pollut 205:261–268PubMedCrossRefGoogle Scholar
  211. 211.
    Garreau B, Vallette G, Adlercreutz H, Wähälä K, Mäkelä T, Benassayag C, Nunez EA (1991) Phytoestrogens: new ligands for rat and human alpha-fetoprotein. Biochim Biophys Acta 1094(3):339–345PubMedCrossRefGoogle Scholar
  212. 212.
    Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F (2016) Endocrinology of human parturition. Ann Endocrinol (Paris) 77(2):105–113CrossRefGoogle Scholar
  213. 213.
    Mumford SL, Sundaram R, Schisterman EF, Sweeney AM, Barr DB, Rybak ME, Maisog JM, Parker DL, Pfeiffer CM, Louis GM (2014) Higher urinary lignan concentrations in women but not men are positively associated with shorter time to pregnancy. J Nutr 144(3):352–358PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Fara GM, Del Corvo G, Bernuzzi S, Bigatello A, Di Pietro C, Scaglioni S, Chiumello G (1979) Epidemic of breast enlargement in an Italian school. Lancet 2:295–297PubMedCrossRefGoogle Scholar
  215. 215.
    Saenz de Rodriguez CA, Bongiovanni AM, Conde de Borrego L (1985) An epidemic of precocious development in Puerto Rican children. J Pediatr 107:393–396PubMedCrossRefGoogle Scholar
  216. 216.
    Szuets P, Mesterhazy A, Falkay G, Bartok T (1997) Early thelarche symptoms in children and their relations to Zearalenon contamination in foodstuffs. Cereal Res Commun 25:429–436Google Scholar
  217. 217.
    Massart F, Saggese G (2010) Oestrogenic mycotoxin exposures and precocious pubertal development. Int J Androl 33:369–376PubMedCrossRefGoogle Scholar
  218. 218.
    Fugh-Berman A (2003) “Bust enhancing” herbal products. Obstet Gynecol 101:1345–1349PubMedGoogle Scholar
  219. 219.
    Bandera EV, Chandran U, Buckley B, Lin Y, Isukapalli S, Marshall I, King M, Zarbl H (2011) Urinary mycoestrogens, body size and breast development in New Jersey girls. Sci Total Environ 409(24):5221–5227PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Arispe SA, Adams B, Adams TE (2013) Effect of phytoestrogens on basal and GnRH-induced gonadotropin secretion. J Endocrinol 219(3):243–250PubMedCrossRefGoogle Scholar
  221. 221.
    He J, Wei C, Li Y, Liu Y, Wang Y, Pan J, Liu J, Wu Y, Cui S (2017) Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30. Mol Cell Endocrinol 461:43. Scholar
  222. 222.
    EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food) (2015) Scientific opinion on the risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J 13:4246 (342 pp)CrossRefGoogle Scholar
  223. 223.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263PubMedCrossRefGoogle Scholar
  224. 224.
    Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engström O, Ljunggren J, Gustafsson JA, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18(17):4608–4618PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Gougelet A, Mueller SO, Korach KS, Renoir JM (2007) Oestrogen receptors pathways to oestrogen responsive elements: the transactivation function-1 acts as the keystone of oestrogen receptor (ER)beta-mediated transcriptional repression of ERalpha. J Steroid Biochem Mol Biol 104(3–5):110–122PubMedCrossRefGoogle Scholar
  226. 226.
    Abot A, Fontaine C, Raymond-Letron I, Flouriot G, Adlanmerini M, Buscato M, Otto C, Bergès H, Laurell H, Gourdy P, Lenfant F, Arnal JF (2013) The AF-1 activation function of estrogen receptor α is necessary and sufficient for uterine epithelial cell proliferation in vivo. Endocrinology 154(6):2222–2233PubMedCrossRefGoogle Scholar
  227. 227.
    Kimura T (2012) East meets west: ethnic differences in prostate cancer epidemiology between East Asians and caucasians. Chin J Cancer 31(9):421–429PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Nakamura H, Wang Y, Kurita T, Adomat H, Cunha GR, Wang Y (2011) Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer. PLoS One 6(5):e20034PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Zhang Q, Feng H, Qluwakemi B, Wang J, Yao S, Cheng G, Xu H, Qiu H, Zhu L, Yuan M (2017) Phytoestrogens and risk of prostate cancer: an updated meta-analysis of epidemiologic studies. Int J Food Sci Nutr 68(1):28–42PubMedCrossRefGoogle Scholar
  230. 230.
    Woo HD, Park S, Oh K, Kim HJ, Shin HR, Moon HK, Kim J (2014) Diet and cancer risk in the Korean population: a meta- analysis. Asian Pac J Cancer Prev 15(19):8509–8519PubMedCrossRefGoogle Scholar
  231. 231.
    Nagata C, Mizoue T, Tanaka K, Tsuji I, Tamakoshi A, Matsuo K, Wakai K, Inoue M, Tsugane S, Sasazuki S Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan (2014) Soy intake and breast cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 44(3):282–295PubMedCrossRefGoogle Scholar
  232. 232.
    Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG (2013) Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev 14(4):2407–2412PubMedCrossRefGoogle Scholar
  233. 233.
    Carreau C, Flouriot G, Bennetau-Pelissero C, Potier M (2009) Respective contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha induced transcriptional activity by isoflavones and equol: consequence on breast cancer cell proliferation. Mol Nutr Food Res 53(5):652–658PubMedCrossRefGoogle Scholar
  234. 234.
    Wu Q, Yang Y, Yu J, Jin N (2012) Soy isoflavone extracts stimulate the growth of nude mouse xenografts bearing estrogen-dependent human breast cancer cells (MCF-7). J Biomed Res 26(1):44–52PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Shike M, Doane AS, Russo L, Cabal R, Reis-Filho JS, Gerald W, Cody H, Khanin R, Bromberg J, Norton L (2014) The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J Natl Cancer Inst 106(9):189–201CrossRefGoogle Scholar
  236. 236.
    Hilakivi-Clarke L, Andrade JE, Helferich W (2010) Is soy consumption good or bad for the breast? J Nutr 140(12):2326S–2334SPubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Messina M, Hilakivi-Clarke L (2009) Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr Cancer 61(6):792–798PubMedCrossRefGoogle Scholar
  238. 238.
    de Assis S, Warri A, Benitez C, Helferich W, Hilakivi-Clarke L (2011) Protective effects of prepubertal genistein exposure on mammary tumorigenesis are dependent on BRCA1 expression. Cancer Prev Res (Phila) 4(9):1436–1448CrossRefGoogle Scholar
  239. 239.
    Li M, Zhang Z, Hill DL, Chen X, Wang H, Zhan R (2005) Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res 65(18):8200–8208PubMedCrossRefGoogle Scholar
  240. 240.
    Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S (1995) Genistein suppresses mammary cancer in rats. Carcinogenesis 16(11):2833–2840PubMedCrossRefGoogle Scholar
  241. 241.
    National Toxicology Program (2008) Toxicology and carcinogenesis studies of genistein (Cas no. 446-72-0) in Sprague-Dawley rats (feed study). Natl Toxicol Program Tech Rep Ser 55:1–240Google Scholar
  242. 242.
    Chen M, Rao Y, Zheng Y, Wei S, Li Y, Guo T, Yin P (2014) Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One 9(2):e89288PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Fagan DH, Yee D (2008) Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 13(4):423–429PubMedCrossRefGoogle Scholar
  244. 244.
    van Duursen MB, Nijmeijer SM, de Morree ES, de Jong PC, van den Berg M (2011) Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vivo breast cancer model. Toxicology 289(2–3):67–73PubMedCrossRefGoogle Scholar
  245. 245.
    Andrade JE, Ju YH, Baker C, Doerge DR, Helferich WC (2015) Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol Nutr Food Res 59:413–423PubMedCrossRefGoogle Scholar
  246. 246.
    Choi SY, Ha TY, Ahn JY, Kim SR, Kang KS, Hwang IK, Kim S (2008) Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta Med 74(1):25–32PubMedCrossRefGoogle Scholar
  247. 247.
    Aiad HA, Wahed MM, Asaad NY, El-Tahmody M, Elhosary E (2014) Immunohistochemical expression of GPR30 in breast carcinoma of Egyptian patients: an association with immunohistochemical subtypes. APMIS 122(10):976–984PubMedCrossRefGoogle Scholar
  248. 248.
    Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, Zha X, Wang S (2012) Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int J Mol Med 30(2):337–343PubMedCrossRefGoogle Scholar
  249. 249.
    Girgert R, Emons G, Gründker C (2012) Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat 134(1):199–205PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Prossnitz ER, Barton M (2014) Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 389(1–2):71–83PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Girgert R, Emons G, Gründker C (2014) Inhibition of GPR30 by estriol prevents growth stimulation of triple-negative breast cancer cells by 17β-estradiol. BMC Cancer 14:935PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Imesch P, Samartzis EP, Dedes KJ, Fink D, Fedier A (2013) Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells. Fertil Steril 100(3):770–776PubMedCrossRefGoogle Scholar
  253. 253.
    Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102(1–5):175–179PubMedCrossRefGoogle Scholar
  254. 254.
    Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK (2013) The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 238:345–360PubMedCrossRefGoogle Scholar
  255. 255.
    Teng CT, Beames B, Alex Merrick B, Martin N, Romeo C, Jetten AM (2014) Development of a stable cell line with an intact PGC-1α/ERRα axis for screening environmental chemicals. Biochem Biophys Res Commun 444(2):177–181PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Hedelin M, Bälter KA, Chang ET, Bellocco R, Klint A, Johansson JE, Wiklund F, Thellenberg-Karlsson C, Adami HO, Grönberg H (2006) Dietary intake of phytoestrogens, estrogen receptor-beta polymorphisms and the risk of prostate cancer. Prostate 66(14):1512–1520PubMedCrossRefGoogle Scholar
  257. 257.
    Ward HA, Kuhnle GG, Mulligan AA, Lentjes MA, Luben RN, Khaw KT (2010) Breast, colorectal, and prostate cancer risk in the European prospective investigation into cancer and nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 91(2):440–448PubMedCrossRefGoogle Scholar
  258. 258.
    Clavel T, Henderson G, Alpert CA, Philippe C, Rigottier-Gois L, Doré J, Blaut M (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71(10):6077–6085PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Adlercreutz H (1990) Western diet and western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest 201(Suppl):3–23CrossRefGoogle Scholar
  260. 260.
    Saarinen NM, Tuominen J, Pylkkänen L, Santti R (2010) Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans. Forum Nutr 2(2):99–115Google Scholar
  261. 261.
    Azrad M, Vollmer RT, Madden J, Dewhirst M, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner DE, Demark-Wahnefried W (2013) Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer. J Med Food 16(4):357–360PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Power KA, Saarinen NM, Chen JM, Thompson LU (2006) Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein, do not promote the growth of MCF-7 xenografts in ovariectomized athymic nude mice. Int J Cancer 118(5):1316–1320PubMedCrossRefGoogle Scholar
  263. 263.
    Truan JS, Chen JM, Thompson LU (2012) Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr Cancer 64(1):65–71PubMedCrossRefGoogle Scholar
  264. 264.
    Touillaud MS, Thiébaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99(6):475–486PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92(1):141–153PubMedCrossRefGoogle Scholar
  266. 266.
    Seibold P, Vrieling A, Johnson TS, Buck K, Behrens S, Kaaks R, Linseisen J, Obi N, Heinz J, Flesch-Janys D, Chang-Claude J (2014) Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-analysis. Int J Cancer 135(4):923–933PubMedCrossRefGoogle Scholar
  267. 267.
    Saarinen NM, Huovinen R, Wärri A, Mäkelä SI, Valentín-Blasini L, Sjöholm R, Ammälä J, Lehtilä R, Eckerman C, Collan YU, Santti RS (2002) Enterolactone inhibits the growth of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in the rat. Mol Cancer Ther 1(10):869–876PubMedGoogle Scholar
  268. 268.
    Shepard TH, Pyne GE, Kirschvink JF, McLean MC, USAR (1960) Soybean goiter – report of three cases. N Engl J Med 262:1099–1103CrossRefGoogle Scholar
  269. 269.
    Chorazy PA, Himelhoch S, Hopwood NJ, Greger NG, Postellon DC (1995) Persistent hypothyroidism in an infant receiving a soy formula: case report and review of the literature. Pediatrics 96(1 Pt 1):148–150PubMedGoogle Scholar
  270. 270.
    Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Conrad SC, Chiu H, Silverman BL (2004) Soy formula complicates management of congenital hypothyroidism. Arch Dis Child 89(1):37–40PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Fruzza AG, Demeterco-Berggren C, Jones KL (2012) Unawareness of the effects of soy intake on the Management of Congenital Hypothyroidism. Pediatrics 130(3):e699–e702PubMedCrossRefGoogle Scholar
  273. 273.
    Ripp JA (1961) Soybean-induced goiter. Am J Dis Child 102:106–109PubMedGoogle Scholar
  274. 274.
    Bell DS, Ovalle F (2001) Use of soy protein supplement and resultant need for increased dose of levothyroxine. Endocr Pract 7(3):193–194PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Jabbar MA, Larrea J, Shaw RA (1997) Abnormal thyroid function tests in infants with congenital hypothyroidism: the influence of soy-based formula. J Am Coll Nutr 16(3):280–282PubMedCrossRefGoogle Scholar
  276. 276.
    Hofmann PJ, Schomburg L, Köhrle J (2009) Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation. Toxicol Sci 110(1):125–137PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Divi RL, Chang HC, Doerge DR (1997) Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol 54(10):1087–1096PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Bruce B, Messina M, Spiller GA (2003) Isoflavone supplements do not affect thyroid function in iodine-replete postmenopausal women. J Med Food 6(4):309–316PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Milerová J, Cerovská J, Zamrazil V, Bílek R, Lapcík O, Hampl R (2006) Actual levels of soy phytoestrogens in children correlate with thyroid laboratory parameters. Clin Chem Lab Med 44(2):171–174PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Bitto A, Polito F, Atteritano M, Altavilla D, Mazzaferro S, Marini H, Adamo EB, D’Anna R, Granese R, Corrado F, Russo S, Minutoli L, Squadrito F (2010) Genistein aglycone does not affect thyroid function: results from a three-year, randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 95(6):3067–3072PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Li J, Teng X, Wang W, Chen Y, Yu X, Wang S, Li J, Zhu L, Li C, Fan C, Wang H, Zhang H, Teng W, Shan Z (2011) Effects of dietary soy intake on maternal thyroid functions and serum anti-thyroperoxidase antibody level during early pregnancy. J Med Food 14(5):543–550PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Mittal N, Hota D, Dutta P, Bhansali A, Suri V, Aggarwal N, Marwah RK, Chakrabarti A (2011) Evaluation of effect of isoflavone on thyroid economy & autoimmunity in oophorectomised women: a randomised, double-blind, placebo-controlled trial. Indian J Med Res 133(6):633–640PubMedPubMedCentralGoogle Scholar
  283. 283.
    Nakamura Y, Ohsawa I, Goto Y, Tsuji M, Oguchi T, Sato N, Kiuchi Y, Fukumura M, Inagaki M, Gotoh H (2017) Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report. J Med Case Rep 11(1):253–258PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Sathyapalan T, Manuchehri AM, Thatcher NJ, Rigby AS, Chapman T, Kilpatrick ES, Atkin SL (2011) The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: a randomized, double-blind, crossover study. J Clin Endocrinol Metab 96(5):1442–1449PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Rubtsova K, Marrack P, Rubtsov AV (2015) Sexual dimorphism in autoimmunity. J Clin Invest 125(6):2187–2193PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Bianchi I, Lleo A, Gershwin ME, Invernizzi P (2012) The X chromosome and immune associated genes. J Autoimmun 38(2–3):J187–J192PubMedCrossRefGoogle Scholar
  287. 287.
    Ohta A, Nagai M, Nishina M, Tomimitsu H, Kohsaka H (2013) Age at onset and gender distribution of systemic lupus erythematosus, polymyositis/dermatomyositis, and systemic sclerosis in Japan. Mod Rheumatol 23(4):759–764PubMedCrossRefGoogle Scholar
  288. 288.
    Peeva E, Venkatesh J, Diamond B (2005) Tamoxifen blocks estrogen-induced B cell maturation but not survival. J Immunol 175(3):1415–1423PubMedCrossRefGoogle Scholar
  289. 289.
    Laffont S, Seillet C, Guéry JC (2017) Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 8:108PubMedPubMedCentralGoogle Scholar
  290. 290.
    Hughes GC, Choubey D (2014) Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat Rev Rheumatol 10(12):740–751PubMedCrossRefGoogle Scholar
  291. 291.
    Gold SM, Voskuhl RR (2009) Estrogen and testosterone therapies in multiple sclerosis. Prog Brain Res 175:239–251PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Arnaud L, Fagot JP, Mathian A, Paita M, Fagot-Campagna A, Amoura Z (2014) Prevalence and incidence of systemic lupus erythematosus in France: a 2010 nation-wide population-based study. Autoimmun Rev 13(11):1082–1089PubMedCrossRefGoogle Scholar
  293. 293.
    Chighizola C, Meroni PL (2012) The role of environmental estrogens and autoimmunity. Autoimmun Rev 11(6–7):A493–A501PubMedCrossRefGoogle Scholar
  294. 294.
    Wang F, Roberts SM, Butfiloski EJ, Morel L, Sobel ES (2007) Acceleration of autoimmunity by organochlorine pesticides: a comparison of splenic B-cell effects of chlordecone and estradiol in (NZBxNZW)F1 mice. Toxicol Sci 99(1):141–152PubMedCrossRefGoogle Scholar
  295. 295.
    Zhao JH, Sun SJ, Horiguchi H, Arao Y, Kanamori N, Kikuchi A, Oguma E, Kayama F (2005) A soy diet accelerates renal damage in autoimmune MRL/Mp-lpr/lpr mice. Int Immunopharmacol 5(11):1601–1610PubMedCrossRefGoogle Scholar
  296. 296.
    Hong Y, Wang T, Huang C, Cheng W, Lin B (2008) Soy isoflavones supplementation alleviates disease severity in autoimmune-prone MRL-lpr/lpr mice. Lupus 17(9):814–821PubMedCrossRefGoogle Scholar
  297. 297.
    Fort P, Moses N, Fasano M, Goldberg T, Lifshitz F (1990) Breast and soy-formula feedings in early infancy and the prevalence of autoimmune thyroid disease in children. J Am Coll Nutr 9(2):164–167PubMedCrossRefGoogle Scholar
  298. 298.
    Tran L, Hammuda M, Wood C, Xiao CW (2013) Soy extracts suppressed iodine uptake and stimulated the production of autoimmunogen in rat thyrocytes. Exp Biol Med (Maywood) 238(6):623–630CrossRefGoogle Scholar
  299. 299.
    Portman MA, Navarro SL, Bruce ME, Lampe JW (2016) Soy isoflavone intake is associated with risk of Kawasaki disease. Nutr Res 36(8):827–834PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Mahmoud AM, Yang W, Bosland MC (2014) Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 140:116–132PubMedCrossRefGoogle Scholar
  301. 301.
    Lu LJ, Anderson KE, Grady JJ, Nagamani M (2001) Effects of an isoflavone-free soy diet on ovarian hormones in premenopausal women. J Clin Endocrinol Metab 86(7):3045–3052PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Life Science and HealthUniversity of BordeauxBordeauxFrance
  2. 2.Department Feed and FoodBordeaux Sciences AgroGradignanFrance

Personalised recommendations