Advances in Melt Electrospinning Technique

  • Mahmoud Mohammed Bubakir
  • Haoyi Li
  • Ahmed Barhoum
  • Weimin Yang
Reference work entry


Melt electrospinning is a technique capable of producing micro- and nanofibers with the advantages of being eco-friendly, cost-effective, and applied in many areas such as nonwovens with high performance, biomedicine, high-efficiency filtration, oil sorption, and many others. This chapter describes the current trends on melt electrospinning including advancements in the technique, processing parameters, materials, apparatus, and areas of applications. Melt differential electrospinning which is a new technique for nanofiber production invented by our innovation team of advanced polymer processing has been introduced. Future perspectives on melt electrospinning are also proposed.


Electrospinning Melt electrospinning Microfibers Nanofibers Processing parameters Biomedicine Environmental protection and improvement 


  1. 1.
    Ramakrishna S, Fujihara K, Teo WE et al. (2005) An introduction to electrospinning and nanofibers. World ScientificGoogle Scholar
  2. 2.
    Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Nanofibers. InTechGoogle Scholar
  3. 3.
    Norton CL (1936) Method of and apparatus for producing fibrous or filamentary material: US, US2048651Google Scholar
  4. 4.
    Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci B Polym Phys 19(6):909–920CrossRefGoogle Scholar
  5. 5.
    Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci Polym Phys Ed 19(6):921–932CrossRefGoogle Scholar
  6. 6.
    Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci Polym Phys Ed 19(6):933–940CrossRefGoogle Scholar
  7. 7.
    Hochleitner G, Jüngst T, Brown TD et al (2015) Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3):035002CrossRefGoogle Scholar
  8. 8.
    Melchels FPW, Domingos MAN, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104CrossRefGoogle Scholar
  9. 9.
    Peltola SM, Melchels FP, Grijpma DW et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280CrossRefGoogle Scholar
  10. 10.
    Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166CrossRefGoogle Scholar
  11. 11.
    Lyons J, Co F (2005) Melt electrospinning of polymers: a review. Polym News 30(6):170–178CrossRefGoogle Scholar
  12. 12.
    Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56CrossRefGoogle Scholar
  13. 13.
    Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45(22):7597–7603CrossRefGoogle Scholar
  14. 14.
    Lyons J (2004) Melt-electrospinning of thermoplastic polymers: an experimental and theoretical analysis. PhD Dissertation, Drexel University, PhiladelphiaGoogle Scholar
  15. 15.
    Zhmayev Y, Joo Y, Park J et al. (2015) Controlling the dispersion and configuration of nanofillers in electrically driven polymer jets with and without air flow. APS Meeting. APS Meeting AbstractsGoogle Scholar
  16. 16.
    Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316CrossRefGoogle Scholar
  17. 17.
    Ogata N, Yamaguchi S, Shimada N et al (2007) Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645CrossRefGoogle Scholar
  18. 18.
    Jian F, Li Z, David S et al (2012) Needleless melt electrospinning of polypropylene nano fibers. J Nanomater 2012:382639CrossRefGoogle Scholar
  19. 19.
    Komarek M, Martinova L (2010) Design and evaluation of melt electrospinning electrodes. Olomouc, Czech Republic, EU, 10:12–14Google Scholar
  20. 20.
    Liu Y, Deng RJ, Hao MF, Yan H, Yang WM (2010) Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polym Eng Sci 50(10):2074–2078CrossRefGoogle Scholar
  21. 21.
    Hao MF, Liu Y, He XT et al (2011) Experimental study of melt electrospinning in parallel electrical field. Adv Mater Res 221:111–116CrossRefGoogle Scholar
  22. 22.
    Dalton PD, Grafahrend D, Klinkhammer K et al (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833CrossRefGoogle Scholar
  23. 23.
    Hacker C, Karahaliloglu Z, Seide G et al (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):1179–1181CrossRefGoogle Scholar
  24. 24.
    Yoon YI, Park KE, Lee SJ et al (2013) Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int 2013(2013):309048Google Scholar
  25. 25.
    Kim SJ, Da HJ, Park WH et al (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51(6):1320–1327CrossRefGoogle Scholar
  26. 26.
    Vaquette C, Fan W, Xiao Y et al (2012) A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33(22):5560CrossRefGoogle Scholar
  27. 27.
    Karahaliloglu Z, Hacker C, Demirbilek M et al (2014) Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J Nanopart Res 16(9):1–14CrossRefGoogle Scholar
  28. 28.
    Ren J, Blackwood KA, Doustgani A et al (2014) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 102(9):3140–3153CrossRefGoogle Scholar
  29. 29.
    Brown TD, Edin F, Detta N et al (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C 45:698–708CrossRefGoogle Scholar
  30. 30.
    Li F, Zhao Y, Wang S et al (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274CrossRefGoogle Scholar
  31. 31.
    Hochleitner G, Hümmer JF, Luxenhofer R et al (2014) High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. Polymer 55(20):5017–5023CrossRefGoogle Scholar
  32. 32.
    Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592CrossRefGoogle Scholar
  33. 33.
    Taylor G (1969) Electrically driven jets. Proc R Soc Lond A Math Phys Sci 313(1515):453–475CrossRefGoogle Scholar
  34. 34.
    Hendricks CD, Carson RS, Hogan JJ et al (1964) Photo-micrography of electrically sprayed heavy particles. AIAA J 2(4):733–737CrossRefGoogle Scholar
  35. 35.
    Mingfeng H, Yong L, Deng R et al (2010) Research on typical materials by melt electrospinning. Eng Plast Appl 38(3):24–27Google Scholar
  36. 36.
    Ogata N, Shimada N, Yamaguchi S et al (2007) Melt electrospinning of poly(ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132CrossRefGoogle Scholar
  37. 37.
    Ogata N, Lu G, Iwata T et al (2007) Effects of ethylene content of poly(ethylene-co-vinyl alcohol) on diameter of fibers produced by melt-electrospinning. J Appl Polym Sci 104(2):1368–1375CrossRefGoogle Scholar
  38. 38.
    Nayak R, Kyratzis IL, Truong YB et al (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47(17):6387–6396CrossRefGoogle Scholar
  39. 39.
    Ratthapol R, Darrell HR (2003) Electrospinning process of molten polypropylene in vacuum. J Met Mater Miner 12(2):81–87Google Scholar
  40. 40.
    Detta N, Toby DB, Fredrik KE et al (2010) Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polym Int 59(11):1558–1562CrossRefGoogle Scholar
  41. 41.
    Song CS, Jo KJ, Jo NK et al (2009) Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym Eng Sci 49(2):391–396CrossRefGoogle Scholar
  42. 42.
    Laudenslager MJ, Sigmund WM (2012) electrospinning. In: Encyclopedia of Nanotechnology. Springer, Amsterdam, pp 769–775Google Scholar
  43. 43.
    Hochleitner G, Youssef A, Hrynevich A et al (2016) Fibre pulsing during melt electrospinning writing. Bionanomaterials 17(3–4):159–171Google Scholar
  44. 44.
    Nandana BJ, Subhas CK (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefGoogle Scholar
  45. 45.
    Deng R, Liu Y, Yang W (2009) Melt electrospinning of low-density polyethylene having a low-melt flow index. J Appl Polym Sci 114:166–175CrossRefGoogle Scholar
  46. 46.
    Zhmayev E, Cho D, Joo YL (2010) Modeling of melt electrospinning for semi-crystalline polymers. Polymer 51(1):274–290CrossRefGoogle Scholar
  47. 47.
    Huajun Z, Green TB, Joo YL (2006) The thermal effects on electrospinning of polylactic acid melt. Polymer 47(21):7497–7505CrossRefGoogle Scholar
  48. 48.
    Xiuyan L, Wang Z, Jiaona W et al (2014) Preparation and properties of TPU micro/nanofibers by a laser melt-electrospinning system. Polym Eng Sci 54(6):1412–1417CrossRefGoogle Scholar
  49. 49.
    Sarkar K, Gomez C, Zambrano S et al (2010) Electrospinning to Forcespinning™. Mater Today 13(11):12–14CrossRefGoogle Scholar
  50. 50.
    Li H, Chen H, Zhong X et al (2014) Interjet distance in needleless melt differential electrospinning with umbellate nozzles. J Appl Polym Sci 131(15):40515.1–40515.8Google Scholar
  51. 51.
    Aoki S, Hideaki T, Koji N et al (2010) Poly (ethylene-co-vinyl alcohol) and Nylon 6/12 nanofibers produced by melt electrospinning system equipped with a line-like laser beam melting device. J Appl Polym Sci 116(5):2998–3004Google Scholar
  52. 52.
    Yang W, Zhong X, Li H et al (2013) A nozzle based on melt differential electrospinning. China:201310159570.0, 07, 31Google Scholar
  53. 53.
    Minglei H (2012) Study of rotor-type electrostatic spinning device and its performance. Donghua University, Shanghai, pp 19–23Google Scholar
  54. 54.
    Yarin, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980CrossRefGoogle Scholar
  55. 55.
    Nagarajan MT (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51(21):4928–4936CrossRefGoogle Scholar
  56. 56.
    Shan T, Yongchun Z, Xinhou W (2010) Splashing needleless electrospinning of nanofibers. Polym Eng Sci 50(11):2251–2256Google Scholar
  57. 57.
    Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. Int J Nonlinear Sci Numer Simul 8(3):393–396CrossRefGoogle Scholar
  58. 58.
    Guojun J, Sai Z, Xiaohong Q (2013) High throughput of quality nanofibers via one stepped pyramid shaped spinneret. Mater Lett 106(9):56–58Google Scholar
  59. 59.
    Wang X, Haitao N, Lin T et al (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1585CrossRefGoogle Scholar
  60. 60.
    Lin T, Wang X, Wang X et al (2011) Electrostatic spinning assembly. US: 2011/0311671 A1, 22Google Scholar
  61. 61.
    Lei ZF, RongHua G, Porat I (2010) Needle and needleless electrospinning for nanofibers. J Appl Polym Sci 115(5):2591–2598CrossRefGoogle Scholar
  62. 62.
    Steve W, Alex F, Michael J et al (2006) Cost-effective nanofiber formation-melt electrospinning. NTC Project: F05-MD01:a6Google Scholar
  63. 63.
    Liao S, Langfield B, Ristovski N et al (2016) Effect of humidity on melt electrospun polycaprolactone scaffolds. Bionanomaterials 17(3–4):173–178Google Scholar
  64. 64.
    Liu Y, Deng R, Hao M et al (2010) Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polym Eng Sci 50(10):2074–2078CrossRefGoogle Scholar
  65. 65.
    Chu B, Fang D, Hsaio BS (2011) Apparatus and method for electro-blowing or blowing-assisted electrospinning technology. US:7887311B2. 2.15Google Scholar
  66. 66.
    Sheng T, Nobuo O, Naoki S et al (2009) Melt electrospinning from poly(L-lactide) rods coated with poly(ethylene-co-vinyl alcohol). J Appl Polym Sci 113(2):1282–1288CrossRefGoogle Scholar
  67. 67.
    Malakhov SN, Khomenko AY, Belousov SI et al (2009) Method of manufacturing nonwovens by electrospinning from polymer melts. Fiber Chem 6:355–359CrossRefGoogle Scholar
  68. 68.
    Wang X, Zhengming H (2010) Melt electro-spinning of PMMA. Chin J Polym Sci 28(1):45–53CrossRefGoogle Scholar
  69. 69.
    Zhao F (2012) Investigation on preparation of superfine fibers for efficiently removing formaldehyde. Beijing University of Chemical Technology, pp :17–22.(In Chinese)Google Scholar
  70. 70.
    Lingtao X, Yong L, Yumei D et al (2012) Application of hyper branched polymer in melt electrospinning. Plastics 41(6):1–3. (In chinese)Google Scholar
  71. 71.
    Xiuyan L, Huichao L, Congju L (2011) Research progress of laser melt electrospinning. Synth Fiber Ind 34(5):36–40Google Scholar
  72. 72.
    Midori T, Hao F, Kazuhiro N et al (2008) Ultra-fine fibers produced by laser electrospinning. Sen’i Gakkaishi 64(1):29–31CrossRefGoogle Scholar
  73. 73.
    Xiuyan L, Huichao L, Wang J et al (2012) Preparation and properties of PET/SiO2 composite micro/nanofibers by a laser melt-electrospinning system. J Appl Polym Sci 125(3):2050–2055CrossRefGoogle Scholar
  74. 74.
    Cong VD, Thuy TTN, Jun SP (2012) Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Sol Energy Mater Sol Cells 104:131–139CrossRefGoogle Scholar
  75. 75.
    Cevat E, Dilhan MK, Hongjun W (2008) A hybrid twin screw extrusion/electrospinning method to process nanoparticles incorporated electrospun nanofibres. Nanotechnology 19(16):165302CrossRefGoogle Scholar
  76. 76.
    Farrugia BL, Brown TD, Upton Z et al (2013) Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 5(2):25001–25011CrossRefGoogle Scholar
  77. 77.
    Mitchell SB, Sanders JE (2006) A unique device for controlled electrospinning. J Biomed Mater Res A 78(1):110–120CrossRefGoogle Scholar
  78. 78.
    Seungsin L, Kay O (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77(9):696–702CrossRefGoogle Scholar
  79. 79.
    Rajabinejad H, Khajavi R, Rashidi A et al (2009) Recycling of used bottle grade poly ethylene terephthalate to nanofibers by melt-electrospinning method. Int J Environ Res 3(4):663–670Google Scholar
  80. 80.
    Li S, Xu Y, Wang A et al (2013) Preparation and properties of PET melt electrospinning composite filter material. Eng Plast Appl 41(12):8–11Google Scholar
  81. 81.
    Li X, Zhang Y, Li H et al (2014) Effect of oriented fiber membrane fabricated via needleless melt electrospinning on water filtration efficiency. Desalination 344:266–273CrossRefGoogle Scholar
  82. 82.
    Deng D, Prendergast DP, MacFarlane J et al (2013) Hydrophobic meshes for oil spill recovery devices. ACS Appl Mater Interfaces 5(3):774–781CrossRefGoogle Scholar
  83. 83.
    Li H, Wu W, Bubakir M et al (2014) Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. J Appl Polym Sci 131(7):40080Google Scholar
  84. 84.
    Li H, Li Y, Yang W et al (2017) Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water. Polymers 9(2):3CrossRefGoogle Scholar
  85. 85.
    Dalton PD, Klinkhammer K, Salber J et al (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690CrossRefGoogle Scholar
  86. 86.
    Dalton PD, Joergensen NT, Groll J et al (2008) Patterned melt electrospun substrates for tissue engineering. Biomed Mater 3(3):034109CrossRefGoogle Scholar
  87. 87.
    Brown TD, Slotosch A, Thibaudeau L et al (2012) Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 7(4):13CrossRefGoogle Scholar
  88. 88.
    Brown TD, Dalton PD, Hutmacher DW et al (2011) Direct writing by way of melt electrospinning. Adv Mater 23(47):5651–5657CrossRefGoogle Scholar
  89. 89.
    Dalton PD, Vaquette C, Farrugia BL et al (2013) Electrospinning and additive manufacturing: converging technologies. Biomater Sci 1(2):171–185CrossRefGoogle Scholar
  90. 90.
    Lee H, Ahn S, Choi H et al (2013) Fabrication, characterization, and in vitro biological activities of melt-electrospun PLA micro/nanofibers for bone tissue regeneration. J Mater Chem B 1(30):3670–3677CrossRefGoogle Scholar
  91. 91.
    Hacker C, Karahaliloglu Z, Seide G et al (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):40132CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahmoud Mohammed Bubakir
    • 4
    • 2
  • Haoyi Li
    • 1
    • 2
  • Ahmed Barhoum
    • 3
  • Weimin Yang
    • 1
    • 2
  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  3. 3.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  4. 4.Department of Mechanical and Electrical Industrial EngineeringGharyan Engineering CollegeGharyanLibya

Personalised recommendations