Advertisement

A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications

  • Ahmed BarhoumEmail author
  • Soliman I. El-Hout
  • Gomaa A. M. Ali
  • Esraa Samy Abu Serea
  • Ahmed H. Ibrahim
  • Kaushik Pal
  • Ahmed Esmail Shalan
  • Sabah M. Abdelbasir
Reference work entry

Abstract

Advantages of carbon-based nanomaterials with different nanostructures as (Nanodiamonds, Carbon Quantum Dots, Fullerenes Nanostructures, graphene nanosheets, carbon nanofibers and carbon nanotubes), in the studies scheme of fabrication, functionalization, potential properties and applications including electronics, biological and energy applications are discussed in the current chapter. The reported classification, properties, synthesis, properties and emerging applications of these carbon nanomaterials have opened up new chances toward the future devices and materials. A better understanding of the key factors through the knowledge founded in this work can affect the future research directions.

Keywords

Carbon nanomaterials Carbon Dots Fullerenes nanostructures Carbon nanotubes Graphene Carbon nanofibers Fabrication techniques Potential applications 

References

  1. 1.
    El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf A Physicochem Eng Asp 422:44–49CrossRefGoogle Scholar
  2. 2.
    Barhoum A, Rahier H, Abou-Zaied RE, Rehan M, Dufour T, Hill G, Durfrense A (2014) Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Interfaces 6(4):2734–2744CrossRefGoogle Scholar
  3. 3.
    El-Sherbiny S, El-Sheikh SM, Barhoum A (2015) Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol 279:290–300CrossRefGoogle Scholar
  4. 4.
    Morsy FA, El-Sheikh SM, Barhoum A (2014) Nano-silica and SiO2/CaCO3 nanocomposite prepared from semi-burned rice straw ash as modified papermaking fillers. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2014.11.032
  5. 5.
    Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184CrossRefGoogle Scholar
  6. 6.
    Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205CrossRefGoogle Scholar
  7. 7.
    Samyn P, Barhoum A (2018) Engineered nanomaterials for papermaking industry. Fundam Nanopart 245–277Google Scholar
  8. 8.
    Barhoum A, Rehan M, Rahier H, Bechelany M, Van Assche G (2016) Seed-mediated hot-injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism. ACS Appl Mater Interfaces 8(16):10551–10561CrossRefGoogle Scholar
  9. 9.
    Rehan M, Barhoum A, Assche GV, Dufresne A, Gätjen L, Wilken R (2017) Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int J Biol Macromol 98:877–886CrossRefGoogle Scholar
  10. 10.
    Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R (2018) Development of Ag/AgX (X= Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym 197:227–236CrossRefGoogle Scholar
  11. 11.
    Barhoum A, Van Lokeren L, Rahier H, Dufresne A, Van Assche G (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50(24):7908–7918CrossRefGoogle Scholar
  12. 12.
    Hammani S, Barhoum A, Bechelany M (2018) Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53(3):1911–1921CrossRefGoogle Scholar
  13. 13.
    Essawy HA, El-Sabbagh SH, Tawfik ME, Van Assche G, Barhoum A (2018) Assessment of provoked compatibility of NBR/SBR polymer blend with montmorillonite amphiphiles from the thermal degradation kinetics. Polym Bull 75(4):1417–1430CrossRefGoogle Scholar
  14. 14.
    Youssef AM, Moustafa HA, Barhoum A, Hakim AEFAA, Dufresne A (2017) Evaluation of the morphological, electrical and antibacterial properties of polyaniline nanocomposite based on Zn/Al-layered double hydroxides. Chem Sel 2(27):8553–8566Google Scholar
  15. 15.
    Esaifan M, Rahier H, Barhoum A, Khoury H, Hourani M, Wastiels J (2015) Development of inorganic polymer by alkali-activation of untreated kaolinitic clay: reaction stoichiometry, strength and dimensional stability. Constr Build Mater 91:251–259CrossRefGoogle Scholar
  16. 16.
    Barhoum A, Li H, Chen M, Cheng L, Yang W, Dufresne A (2018) Emerging applications of cellulose nanofibers. Handb Nanofibers 1–26Google Scholar
  17. 17.
    Nnaji CO, Jeevanandam J, Chan YS, Danquah MK, Pan S, Barhoum A (2018) Engineered nanomaterials for wastewater treatment: current and future trends. Fundam Nanopart 129–168Google Scholar
  18. 18.
    El-Maghrabi HH, Barhoum A, Nada AA, Moustafa YM, Seliman SM (2018) Synthesis of mesoporous core-shell CdS@TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. J Photochem Photobiol A 351:261–270CrossRefGoogle Scholar
  19. 19.
    Gopalakrishnan R, Li Y, Smekens J, Barhoum A, Van Assche G, Omar N, Van Mierlo J (2018) Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge. Ionics 25:1–13CrossRefGoogle Scholar
  20. 20.
    Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46:14034–14044CrossRefGoogle Scholar
  21. 21.
    Barhoum A, Melcher J, Van Assche G, Rahier H, Bechelany M, Fleisch M, Bahnemann D (2017) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52(5):2746–2762CrossRefGoogle Scholar
  22. 22.
    Abdel-Haleem FM, Saad M, Barhoum A, Bechelany M, Rizk MS (2018) PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids. Mater Sci Eng C 89:140–148CrossRefGoogle Scholar
  23. 23.
    Nashar RME, Ghani NTA, Gohary NAE, Barhoum A, Madbouly A (2017) Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids. Mater Sci Eng C 76:123–129CrossRefGoogle Scholar
  24. 24.
    Gugulothu D, Barhoum A, Afzal SM, Venkateshwarlu B, Uludag H (2018) Structural multifunctional nanofibers and their emerging applications. Handb Nanofibers 1–41Google Scholar
  25. 25.
    Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6(6):1312–1338CrossRefGoogle Scholar
  26. 26.
    Rasouli R, Barhoum A, Bechelany M, Dufresne A (2018) Nanofibers for biomedical and healthcare applications. Macromol Biosci.  https://doi.org/10.1002/mabi.201800256 CrossRefGoogle Scholar
  27. 27.
    Rasouli R, Barhoum A (2018) Advances in nanofibers for antimicrobial drug delivery. Handb Nanofibers 1–42Google Scholar
  28. 28.
    Rastogi A, Singh P Haraz FA, Barhoum A (2018) Biological synthesis of nanoparticles: an environmentally benign approach. Fundam Nanopart 571–604Google Scholar
  29. 29.
    Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074CrossRefGoogle Scholar
  30. 30.
    Weiss J, Takhistov P, McClements DJ (2006) Antimicrobial properties of a novel silver-silica nanocomposite material. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  31. 31.
    Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics for mesoporous materials. J Nanosci Nanotechnol 11(1):1–13CrossRefGoogle Scholar
  32. 32.
    Ali GAM, Yusoff MM, Ng YH, Lim NH, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of MnO2 for supercapacitors application: a comparison study. Curr Appl Phys 15(10):1143–1147CrossRefGoogle Scholar
  33. 33.
    Kreibig U, Vollmer M (1995) Theoretical considerations, optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822CrossRefGoogle Scholar
  35. 35.
    Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599CrossRefGoogle Scholar
  36. 36.
    Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74CrossRefGoogle Scholar
  37. 37.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2007) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem 111:2–7Google Scholar
  38. 38.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRefGoogle Scholar
  39. 39.
    Wen B, Zhao J, Li T (2007) Relative stability of hydrogenated nanodiamond and nanographite from density function theory. Chem Phys Lett 441:318–321CrossRefGoogle Scholar
  40. 40.
    Kroto H, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–164CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRefGoogle Scholar
  43. 43.
    Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. J Colloid Interface Sci 246(1):78–84CrossRefGoogle Scholar
  44. 44.
    Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108(24):8234–8240CrossRefGoogle Scholar
  45. 45.
    Bekyarova E, Ni Y, Malarkey E (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17CrossRefGoogle Scholar
  46. 46.
    Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384CrossRefGoogle Scholar
  47. 47.
    Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4):534–551CrossRefGoogle Scholar
  48. 48.
    Qiu S, Zhou Z, Dong J, Chen G, Tribol J (1999) Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J Tribol 123(3):441–443CrossRefGoogle Scholar
  49. 49.
    Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129(1):1CrossRefGoogle Scholar
  50. 50.
    Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154CrossRefGoogle Scholar
  51. 51.
    Shaikjee A, Coville NJ (2012) The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res 3(3):195–223CrossRefGoogle Scholar
  52. 52.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRefGoogle Scholar
  53. 53.
    Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRefGoogle Scholar
  54. 54.
    Liu Z, Tabakman S, Welsher K, Dai H (2010) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120CrossRefGoogle Scholar
  55. 55.
    Chen F, Wang Z-C, Lin C-J (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57(4):858–861CrossRefGoogle Scholar
  56. 56.
    Gatenholm P, Klemm D (2010) Acterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(03):208–213CrossRefGoogle Scholar
  57. 57.
    Fecht HJ, Brühne K (2014) Carbon-based nanomaterials and hybrids: synthesis, properties, and commercial applications. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163CrossRefGoogle Scholar
  59. 59.
    Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations). Pure Appl Chem 66(9):1893–1901CrossRefGoogle Scholar
  60. 60.
    Boehm HP, Clauss A, Fischer GO, Hofmann U (1962) Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z Anorg Allg Chem 316(3–4):119–127CrossRefGoogle Scholar
  61. 61.
    Mouras S, Hamwi A, Djurado D, Cousseins JC (1987) Synthesis of first stage graphite intercalation compounds with fluorides. Rev Chim Mineral 24:572–582Google Scholar
  62. 62.
    Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  63. 63.
    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566CrossRefGoogle Scholar
  64. 64.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended grapheme. Solid State Commun 146:351CrossRefGoogle Scholar
  65. 65.
    Dean CR, Young AF, Meric L, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. J Nat Nano 5(10):722–726CrossRefGoogle Scholar
  66. 66.
    Ferrer-Anglada N, Gomis V, El-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087CrossRefGoogle Scholar
  67. 67.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefGoogle Scholar
  68. 68.
    Kim YA, Hayashi T, Endo M, Dresselhaus MS (2013) Carbon nanofbers. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin, p 1500Google Scholar
  69. 69.
    Teo KBK, Singh C, Milne WI (2003) Catalytic synthesis of carbon nanotubes and nanofbers. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientifc Publishers, Stevenson Ranch, pp 665–686Google Scholar
  70. 70.
    Palmeri MJ, Putz KW, Ramanathan T, Brinson LC (2011) Multi-scale reinforcement of CFRPs using carbon nanofibers. Compos Sci Technol 71(2):79–86CrossRefGoogle Scholar
  71. 71.
    Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127:181–186CrossRefGoogle Scholar
  72. 72.
    de Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRefGoogle Scholar
  73. 73.
    Treacy MM, Ebbesen TW, Gibson JM (1996) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Nature 381:678–680CrossRefGoogle Scholar
  74. 74.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  75. 75.
    Journet C, Maser WK, Bernier P, Loiseau A, Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRefGoogle Scholar
  76. 76.
    Saito Y, Nakahira T, Uemura S (2002) Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys Chem B 107:931–934CrossRefGoogle Scholar
  77. 77.
    Puretzky A, Geohegan D, Schittenhelm H, Fan X, Guillorn M (2002) Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Appl Surf Sci 197:552–562CrossRefGoogle Scholar
  78. 78.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer J, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487CrossRefGoogle Scholar
  79. 79.
    Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 3(9):2247–2253CrossRefGoogle Scholar
  80. 80.
    Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313CrossRefGoogle Scholar
  81. 81.
    Lee CJ, Park JH, Park J (2000) Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 323:560–565CrossRefGoogle Scholar
  82. 82.
    Rohmund F, Falk L, Campbell E (2000) A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett 328:369–373CrossRefGoogle Scholar
  83. 83.
    Zheng B, Lu C, Gu G, Markarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. J Nano Lett 2:895–898CrossRefGoogle Scholar
  84. 84.
    Wei B, Vajtai R, Choi YY, Ajayan PM, Zhu H, Xu C, Wu D (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107CrossRefGoogle Scholar
  85. 85.
    Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886CrossRefGoogle Scholar
  86. 86.
    Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRefGoogle Scholar
  87. 87.
    Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRefGoogle Scholar
  88. 88.
    Cassel AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRefGoogle Scholar
  89. 89.
    Huang S, Dai L, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. J Phys Chem B 103:4223–4227CrossRefGoogle Scholar
  90. 90.
    Andrews R, Jacques D, Rao AM, Deryshire F, Qian D, Fan X, Dickey EC, Chen A (1999) One-step single source route to carbon nanotubes. J Chem Phys Lett 303:467–474CrossRefGoogle Scholar
  91. 91.
    Marina PE, Ali GAM, See LM, Teo EYL, Ng E-P, Chong KF (2016) In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.02.006
  92. 92.
    Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807CrossRefGoogle Scholar
  93. 93.
    Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–41Google Scholar
  94. 94.
    Atchudan R, Perumal S, Jebakumar TN, Edison I, Pandurangan A, Lee YR (2015) Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method. Phys E 74:355–362CrossRefGoogle Scholar
  95. 95.
    Morjan R-E, Nerushev OA, Ostrovskii DI, Sveningsson M, Jönsson M, Rohmund F, Campbell EEB (2002) Carbon nanotube synthesis for microsystems applications. Physica B 323:51–59CrossRefGoogle Scholar
  96. 96.
    Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313CrossRefGoogle Scholar
  97. 97.
    Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202CrossRefGoogle Scholar
  98. 98.
    Sato S, Kawabata A, Kondo D, Nihei M, Awano Y (2005) Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst. Chem Phys Lett 402:149–154CrossRefGoogle Scholar
  99. 99.
    Zaretskiy SN, Hong Y-K, Ha DH, Yoon J-H, Cheon J, Koo J-Y (2003) Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition. Chem Phys Lett 372:300–305CrossRefGoogle Scholar
  100. 100.
    Marcus MS, Simmons JM, Baker SE, Hamers RJ, Eriksson MA (2009) Predicting the results of chemical vapor deposition growth of suspended carbon nanotubes. Nano Lett 9(5):1806–1811CrossRefGoogle Scholar
  101. 101.
    Wong EW, Bronikowski MJ, Hoenk ME, Kowalczyk RS, Hunt BD (2005) Submicron patterning of iron nanoparticle monolayers for carbon nanotube growth. Chem Mater 17:237–241CrossRefGoogle Scholar
  102. 102.
    Hughes M, Spinks GM (2005) Multiwalled carbon nanotube actuators. Adv Mater 17:443–446CrossRefGoogle Scholar
  103. 103.
    Fung CKM, Wong VTS, Chan RHM, Li WJ (2004) Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors. IEEE Trans Nanotechnol 3:395–403CrossRefGoogle Scholar
  104. 104.
    Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661.  https://doi.org/10.1063/1.1630167 CrossRefGoogle Scholar
  105. 105.
    Harutyunyan AR, Chen G, Eklund PC (2003) Self-assembled growth of single-walled carbon nanotubes by pyrolysis of metalorganic precursor. Appl Phys Lett 82:4794.  https://doi.org/10.1063/1.1587257 CrossRefGoogle Scholar
  106. 106.
    Abel M (2005) Mechanical engineering, master of science. Georgia Institute of Technology, AtlantaGoogle Scholar
  107. 107.
    Khalil I, Julkapli NM, Yehye WA, OrcID, Basirun WJ Bhargava SK (2016) Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Open Access Materials 9(6):406.  https://doi.org/10.3390/ma9060406 CrossRefGoogle Scholar
  108. 108.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra smooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRefGoogle Scholar
  109. 109.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nano meter size effect and edge shaped dependence. Phys Rev B 54:17954–17961CrossRefGoogle Scholar
  110. 110.
    Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRefGoogle Scholar
  111. 111.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Chem Phys 13:17615–17624Google Scholar
  112. 112.
    Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728CrossRefGoogle Scholar
  113. 113.
    Haddon RC, Sippel J, Rinzler AG, Papadimitrakopoulos F (2004) Purification and separation of carbon nanotubes. MRS Bull 29:252CrossRefGoogle Scholar
  114. 114.
    Zhang H, Wu B, Hu W, Liu Y (2011) Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem Soc Rev 40:1324CrossRefGoogle Scholar
  115. 115.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624CrossRefGoogle Scholar
  116. 116.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRefGoogle Scholar
  117. 117.
    Tanaka S, Morita K, Hibino H (2010) Anisotropic layer-by-layer growth of graphene on vicinal SiC (0001) surfaces. Phys Rev B 81:041406CrossRefGoogle Scholar
  118. 118.
    Ma L, Wang J, Ding F (2012) Recent progress and challenges in graphene nanoribbon synthesis. Chem Phys Chem 14:47CrossRefGoogle Scholar
  119. 119.
    Volder MFLD, Tawfick S, Park SJ, John Hart A (2011) Corrugated carbon nanotube microstructures with geometrically tunable compliance. ACS Nano 5(9):7310–7317CrossRefGoogle Scholar
  120. 120.
    Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19(6):2029–2034CrossRefGoogle Scholar
  121. 121.
    Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd, New JerseyCrossRefGoogle Scholar
  122. 122.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRefGoogle Scholar
  123. 123.
    Li W (2015) Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur Polym J 67:365–372CrossRefGoogle Scholar
  124. 124.
    Guo J, Zhou H, Akram MY, Mu X, Nie J, Ma G (2016) Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning. Carbohydr Polym 143:239–245CrossRefGoogle Scholar
  125. 125.
    Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRefGoogle Scholar
  126. 126.
    Zhao J, Liu H, Xu L (2015) Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers. Mater Des 85:483–486CrossRefGoogle Scholar
  127. 127.
    Low LW, Teng TT, Alkarkhi AFM, Morad N, Azahari B (2015) Carbonization of elaeis guineensis frond fiber: effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement. J Ind Eng Chem 28:37–44CrossRefGoogle Scholar
  128. 128.
    Zhang L, Hsieh Y-L (2009) Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J 45(1):47–56CrossRefGoogle Scholar
  129. 129.
    Jo E, Yeo J-G, Kim DK, Oh JS, Hong CK (2014) Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int 63(8):1471–1477CrossRefGoogle Scholar
  130. 130.
    Abeykoon NC, Bonso JS, Ferraris JP (2015) Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 5(26):19865–19873CrossRefGoogle Scholar
  131. 131.
    Hong CK, Yang KS, Oh SH, Ahn J-H, Cho B-H, Nah C (2008) Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polym Int 57(12):1357–1362CrossRefGoogle Scholar
  132. 132.
    Lai C-C, Lo C-T (2015) Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim Acta 183:85–93CrossRefGoogle Scholar
  133. 133.
    Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17CrossRefGoogle Scholar
  134. 134.
    Park JS, Cho SM, Kim WJ, Park J, Yoo PJ (2011) Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl Mater Interfaces 3(2):360–368.  https://doi.org/10.1021/am100977p CrossRefGoogle Scholar
  135. 135.
    Pal K, Majumder TP, Neogy C, Debnath SC (2012) Optical, dielectric and microscopic observation of different phases TiO2 metal host nanowires. J Mol Struct 1016:30–38CrossRefGoogle Scholar
  136. 136.
    Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353CrossRefGoogle Scholar
  137. 137.
    Zhang Y, Zhang P, Wang N, Fu Y, Liu J (2014) Proceedings of the 5th electronics system-integration technology conference, ESTC, Art. no 6962834, 2014 pGoogle Scholar
  138. 138.
    Chen JB, Wang CW, Ma BH, Li Y, Wang J, Guo RS, Liu WM (2009) Field emission from the structure of well-aligned TiO2/Ti nanotube arrays. Thin Solid Films 517:4390CrossRefGoogle Scholar
  139. 139.
    Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends. Polymers 4(2):889–912CrossRefGoogle Scholar
  140. 140.
    Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603CrossRefGoogle Scholar
  141. 141.
    Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRefGoogle Scholar
  142. 142.
    Li X, Qin Y, Picraux ST, Guo ZX (2011) Noncovalent assembly of carbon nanotube-inorganic hybrids. J Mater Chem 21(21):7527–7547CrossRefGoogle Scholar
  143. 143.
    Sagadevan S, Pal K, Koteeswari P, Subashini A (2017) CBD progression of Ti-doped ZnO thin film spectroscopic characterizations. J Mater Sci Mater Electron 28:1–7Google Scholar
  144. 144.
    Patil GP, Bagal VS, Mahajan CR, Chaudhari VR, Suryawanshi SR, More MA, Chavan PG (2016) Observation of low turn-on field emission from nanocomposites of GO/TiO2 and RGO/TiO2. Vacuum 123:167–174CrossRefGoogle Scholar
  145. 145.
    Cheng H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRefGoogle Scholar
  146. 146.
    Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Holl JMMB, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRefGoogle Scholar
  147. 147.
    Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207CrossRefGoogle Scholar
  148. 148.
    Zhang L, Hashimoto Y, Taishi T, Ni Q-Q (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257(6):1845–1849CrossRefGoogle Scholar
  149. 149.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  150. 150.
    Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185CrossRefGoogle Scholar
  151. 151.
    Karatutlu A, Barhoum A, Sapelkin A (2018) Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerg Appl Nanopart Archit Nanostruct 1–28Google Scholar
  152. 152.
    Yamamoto T, Watanabe K, Hernandez ER (2008) Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  153. 153.
    Choi WB, Bae E, Kang D, Chae S, Cheong B-H, Ko J-H, Lee E, Park W (2007) Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15:S512–S516CrossRefGoogle Scholar
  154. 154.
    Endo M, Strano MS (2008) Ajayan PM potential applications of carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, pp 13–61Google Scholar
  155. 155.
    Bonard JM, Salvetat JP, Stöckli T, Forró L, Chatelain A (1999) Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl Phys A Mater Sci Process 69:245–254CrossRefGoogle Scholar
  156. 156.
    Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In: Structure P, Applications, Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis. Springer, New York, pp 391–425CrossRefGoogle Scholar
  157. 157.
    Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577Google Scholar
  158. 158.
    Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283CrossRefGoogle Scholar
  159. 159.
    Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):2491CrossRefGoogle Scholar
  160. 160.
    Zhang J, Zhang R, Wang X, Feng W, Hu P, O’Neill W, Wang Z (2013) Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J Micromech Microeng 23:095031–095039CrossRefGoogle Scholar
  161. 161.
    Nufer S, Fantanas D, Ogilvie SP, Large MJ, Winterauer DJ, Salvage JP, Meloni M, King AAK, Schellenberger P, Shmeliov A, Victor-Roman S, Pelaez-Fernandez M, Nicolosi V, Arenal R, Benito AM, Maser W, Brunton A, Dalton AB (2018) Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing. ACS Appl Nano Mater 1(4):1828–1835CrossRefGoogle Scholar
  162. 162.
    Fu C, Li M, Li H, Li C, Qu C, Yang B (2017) Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Mater Sci Eng C 72:425–432CrossRefGoogle Scholar
  163. 163.
    Venkatesan A, Rathi S, Lee I-Y, Park J, Lim D, Kim G-H, Kannan ES (2016) Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure. Semicond Sci Technol 31:125014CrossRefGoogle Scholar
  164. 164.
    Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRefGoogle Scholar
  165. 165.
    Liu J, Liu Z, Barrow CJ, Yang W (2014) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRefGoogle Scholar
  166. 166.
    Lawal AT (2014) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443CrossRefGoogle Scholar
  167. 167.
    Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X (2014) Graphene field-effect transistor and its application for electronic sensing. Small 10:4042–4065CrossRefGoogle Scholar
  168. 168.
    Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438CrossRefGoogle Scholar
  169. 169.
    Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484CrossRefGoogle Scholar
  170. 170.
    Balasubramanian K, Kern K (2014) 25th anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26:1154–1175CrossRefGoogle Scholar
  171. 171.
    Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948CrossRefGoogle Scholar
  172. 172.
    Vera S (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328Google Scholar
  173. 173.
    Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRefGoogle Scholar
  174. 174.
    Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRefGoogle Scholar
  175. 175.
    Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212CrossRefGoogle Scholar
  176. 176.
    Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406CrossRefGoogle Scholar
  177. 177.
    Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel) 5(4):2054–2130CrossRefGoogle Scholar
  178. 178.
    Chae SH, Lee YH (2014) Carbon nanotubes and graphene towards soft electronics. Nano Convergence 1:15–41CrossRefGoogle Scholar
  179. 179.
    Shah JM, Buechel A, Kroll U, Steinhauser J, Meillaud F, Schade H, Dominé D (2006) Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass. Thin Solid Films 502:292–299CrossRefGoogle Scholar
  180. 180.
    Jacunski D, Shur MS, Hack M (1996) Threshold voltage, field effect mobility, and gate-to channel capacitance in polysilicon TFT's. IEEE Trans Electron Devices 43:1433–1440CrossRefGoogle Scholar
  181. 181.
    Artukovic MK, Hecht DS, Roth S, GrUner G (2005) Transparent and flexible carbon nanotube transistors. Nano Lett 5:757–760CrossRefGoogle Scholar
  182. 182.
    Hu L, Yuan W, Brochu P, Gruner G, Pei Q (2009) Highly stretchable, conductive, and transparent nanotube thin films. Appl Phys Lett 94:161108CrossRefGoogle Scholar
  183. 183.
    Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904CrossRefGoogle Scholar
  184. 184.
    Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRefGoogle Scholar
  185. 185.
    Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337CrossRefGoogle Scholar
  186. 186.
    Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762CrossRefGoogle Scholar
  187. 187.
    Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791CrossRefGoogle Scholar
  188. 188.
    Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161CrossRefGoogle Scholar
  189. 189.
    Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11:5301–5308CrossRefGoogle Scholar
  190. 190.
    Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57:571–580CrossRefGoogle Scholar
  191. 191.
    van der Veen MH et al. Paper presented at the 2012, IEEE international interconnect technology conference, San Jose, 4 to 6 June 2012Google Scholar
  192. 192.
    Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C-L, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRefGoogle Scholar
  193. 193.
    Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRefGoogle Scholar
  194. 194.
    Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14CrossRefGoogle Scholar
  195. 195.
    Arabi SMS, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Phys E 106:150–155CrossRefGoogle Scholar
  196. 196.
    Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Makhlouf ASH (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472CrossRefGoogle Scholar
  197. 197.
    Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. PNAS 100:10175–10180CrossRefGoogle Scholar
  198. 198.
    Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRefGoogle Scholar
  199. 199.
    Khalid P, Hussain MA, Suman VB, Arun AB (2016) Toxicology of carbon nanotubes: a review. Int J Appl Eng Res 11(1):159–168Google Scholar
  200. 200.
    Rahman GMA, Guldi DM, Zambon E, Pasquato L, Tagmatarchis N, Prato M (2005) Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions. Small 1:527–530CrossRefGoogle Scholar
  201. 201.
    Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald ML, Xu D, Nuckolls C (2009) Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew Chem Int Ed 48:4759–4762CrossRefGoogle Scholar
  202. 202.
    Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRefGoogle Scholar
  203. 203.
    Lu J (2007) Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon 45:1599–1605CrossRefGoogle Scholar
  204. 204.
    Chun K-Y, Oh Y, Rho J, Ahn J-H, Kim Y-J, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857CrossRefGoogle Scholar
  205. 205.
    Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRefGoogle Scholar
  206. 206.
    Ou Y, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036CrossRefGoogle Scholar
  207. 207.
    Eder D, Windle AH (2008) Carbon-inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793CrossRefGoogle Scholar
  208. 208.
    Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612CrossRefGoogle Scholar
  209. 209.
    Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063CrossRefGoogle Scholar
  210. 210.
    Feng M, Sun R, Zhan H, Chen Y (2010) Decoration of carbon nanotubes with CdS nanoparticles by polythiophene interlinking for optical limiting enhancement. Carbon 48:1177–1185CrossRefGoogle Scholar
  211. 211.
    Wang D, Li Z, Chen L (2006) Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. J Am Chem Soc 128:15078–15079CrossRefGoogle Scholar
  212. 212.
    Li B, Li L, Wang B, Li CY (2009) Alternating patterns on single-walled carbon nanotubes. Nat Nanotechnol 4:358–362CrossRefGoogle Scholar
  213. 213.
    Han X, Li Y, Deng Z (2007) DNA-wrapped single-walled carbonnanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522CrossRefGoogle Scholar
  214. 214.
    Kim SN, Slocik JM, Naik RR (2010) Strategy for the assembly of carbon nanotube–metal nanoparticle hybrids using biointerfaces. Small 6:1992–1995CrossRefGoogle Scholar
  215. 215.
    Sun C-L, Chen L-C, Su M-C, Hong L-S, Chyan O, Hsu C-Y, Chen K-H, Chang T-F, Chang L (2005) Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity. Chem Mater 17:3749–3753CrossRefGoogle Scholar
  216. 216.
    Fang W-C, Chyan O, Sun C-L, Wu C-T, Chen C-P, Chen K-H, Chen L-C, Huang J-H (2007) Arrayed CNx NT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications. Electrochem Commun 9:239–244CrossRefGoogle Scholar
  217. 217.
    Zamudio A, Elias AL, Rodriguez-Manzo JA, Lopez-Urias F, Rodriguez-Gattorno G, Lupo F, Ruhle M, Smith DJ, Terrones H, Diaz D, Terrones M (2006) Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small 2:346–350CrossRefGoogle Scholar
  218. 218.
    Li X, Liu Y, Fu L, Cao L, Wei D, Yu G, Zhu D (2006) Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes. Carbon 44:3139–3142CrossRefGoogle Scholar
  219. 219.
    Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S, Jiang K (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753CrossRefGoogle Scholar
  220. 220.
    Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:10806–10807CrossRefGoogle Scholar
  221. 221.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  222. 222.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRefGoogle Scholar
  223. 223.
    Bhat MH, Chakravarthy BP, Ramakrishnan PA, Levasseur A, Rao KJ (2000) Bull, Microwave synthesis of electrode materials for lithium batteries. Mater Sci 23:461Google Scholar
  224. 224.
    Subramanian V, Chen CL, Chou HS, Fey GTK (2001) Microwave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithium batteries. J Mater Chem 11:3348–3353CrossRefGoogle Scholar
  225. 225.
    Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566CrossRefGoogle Scholar
  226. 226.
    Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5):1710–1719CrossRefGoogle Scholar
  227. 227.
    Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55(8):825–833CrossRefGoogle Scholar
  228. 228.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  229. 229.
    Zeng X, McCarthy DT, Deletic A, Zhang X (2015) Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv Funct Mater 25:4344–4351CrossRefGoogle Scholar
  230. 230.
    Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826CrossRefGoogle Scholar
  231. 231.
    Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723CrossRefGoogle Scholar
  232. 232.
    Saththasivam J, Yiming W, Wang K, Jin J, Liu Z (2018) A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci Rep 8:1–6CrossRefGoogle Scholar
  233. 233.
    Yang HY, Han ZJ, Yu SF, Pey KL, Ostrikov K, Karnik R (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat Commun 4:2220CrossRefGoogle Scholar
  234. 234.
    Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592CrossRefGoogle Scholar
  235. 235.
    Wang Y, He Q, Qu H, Zhang X, Guo J, Zhu J, Zhao G, Colorado HA, Yu J, Sun L, Bhana S, Khan MA, Huang X, Young DP, Wang H, Wang X, Wei S, Guo Z (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478–9488CrossRefGoogle Scholar
  236. 236.
    Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRefGoogle Scholar
  237. 237.
    Piner R, Li H, Kong X, Tao L, Kholmanov IN, Ji H, Lee WH, Suk JW, Ye J, Hao Y, Chen S, Magnuson CW, Ismach AF, Akinwande D, Ruoff RS (2013) Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 7:7495–7499CrossRefGoogle Scholar
  238. 238.
    Torres JA, Kaner RB (2014) Graphene synthesis: graphene closer to fruition. Nat Mater 13:328–329CrossRefGoogle Scholar
  239. 239.
    Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K (2013) Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations. ACS Nano 7:3150–3157CrossRefGoogle Scholar
  240. 240.
    Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRefGoogle Scholar
  241. 241.
    Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced Thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737CrossRefGoogle Scholar
  242. 242.
    Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683CrossRefGoogle Scholar
  243. 243.
    Palma M, Wang W, Penzo E, Brathwaite J, Zheng M, Hone J, Nuckolls C, Wind SJ (2013) Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J Am Chem Soc 135:8440–8443CrossRefGoogle Scholar
  244. 244.
    Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96CrossRefGoogle Scholar
  245. 245.
    Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537CrossRefGoogle Scholar
  246. 246.
    Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568CrossRefGoogle Scholar
  247. 247.
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533–537CrossRefGoogle Scholar
  248. 248.
    Ali GAM, Habeeb OA, Algarni H, Chong KF (2019) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54(1):683–692CrossRefGoogle Scholar
  249. 249.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRefGoogle Scholar
  250. 250.
    Casas DC, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85CrossRefGoogle Scholar
  251. 251.
    Cao H, Wang X, Gu H, Liu J, Luan L, Liu W, Wang Y, Guo Z (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571CrossRefGoogle Scholar
  252. 252.
    Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2014) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244CrossRefGoogle Scholar
  253. 253.
    Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126CrossRefGoogle Scholar
  254. 254.
    Kumar GG, Reddy K, Nahm KS, Angulakshmi N, Stephan MA (2012) Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. J Phys Chem Solids 73:1187–1190CrossRefGoogle Scholar
  255. 255.
    Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323CrossRefGoogle Scholar
  256. 256.
    Liu L, Wang J, Wei H, Guo Z, Ding K (2014) Using multi-walled carbon nanotubes as the reducing reagents to prepare ptxsny composite nanoparticles by a pyrolysis method for ethanol oxidation reaction. Int J Electrochem Sci 9:2221–2236Google Scholar
  257. 257.
    Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRefGoogle Scholar
  258. 258.
    Yang Z, Yo Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211CrossRefGoogle Scholar
  259. 259.
    Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7:394–400CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  2. 2.Central Metallurgical Research & Development Institute (CMRDI)HelwanEgypt
  3. 3.Chemistry Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  4. 4.Chemistry and Biochemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  5. 5.Center for Materials Science, Zewail City of Science and TechnologyGizaEgypt
  6. 6.Department of NanotechnologyBharath UniversityChennaiIndia
  7. 7.Electronic and Magnetic Materials DepartmentAdvanced Materials Division, Central Metallurgical Research & Development Institute (CMRDI)CairoEgypt
  8. 8.Central Metallurgical Research and Development Institute (CMRDI)HelwanEgypt

Personalised recommendations