Advertisement

Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques

  • Kai Zhang
  • Ahmed BarhoumEmail author
  • Chen Xiaoqing
  • Haoyi LiEmail author
  • Pieter Samyn
Reference work entry

Abstract

Cellulose fibers which consist of a bundle of stretched cellulose chain molecules with cellulose fibril are the smallest structural unit of plant fiber. These elementary fibrils or nanofibers are about 2–20 nm in diameter and a few micrometers in length. Cellulose nanofiber (CNF) is the world’s most advanced bio-nanomaterial. As the cellulose is the most abundant, renewable, and sustainable biopolymer on earth, it creates low environmental impact in its production and disposal. In this chapter, the unique properties of CNFs were introduced including stiffness, biodegradability, biocompatibility, and ability to form a strong entangled nanoporous network, thermal properties, and swelling in water and water absorptivity. Different fabrication techniques including physical methods (e.g., mechanical refining), chemical methods (treatment with acids and alkalis), and biological methods (treatment with specific bacteria and enzymes) were discussed. The chemical grafting on the CNFs and deposition of nanoparticles on nanofiber surface were described. Finally, the future prospects and challenges of CNFs were presented.

Keywords

Cellulose nanofibers Morphological structure Mechanical properties Thermal properties Biocompatibility Fabrication techniques Surface functionalization 

References

  1. 1.
    Samyn P, Barhoum A. Engineered nanomaterials for papermaking industry. Fundamentals of Nanoparticles 245–277Google Scholar
  2. 2.
    Sindhu KA, Prasanth R, Thakur VK (2014) Medical applications of cellulose and its derivatives: present and future. Nanocellulose Polymer Nanocomposites: Fundamentals and Applications 437–477Google Scholar
  3. 3.
    Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175(4):1817–1842Google Scholar
  4. 4.
    Piotrowski S, Carus M (2011) Multi-criteria evaluation of lignocellulosic niche crops for use in biorefinery processes. Nova-Institut GmbH, Hürth, Germany, 5Google Scholar
  5. 5.
    Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811Google Scholar
  6. 6.
    Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24(9):3943–3954Google Scholar
  7. 7.
    Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980Google Scholar
  8. 8.
    Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842Google Scholar
  9. 9.
    Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites †. Macromol Biosci 14(1):10–32Google Scholar
  10. 10.
    Wei H, Rodriguez K, Renneckar S, Vikesland P (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1(4):302–316Google Scholar
  11. 11.
    de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606Google Scholar
  12. 12.
    Zhu H, Zhu S, Jia Z, Parvinian S, Li Y, Vaaland O, Hu L, Li T (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci U S A 112(29):8971–8976Google Scholar
  13. 13.
    del Valle LJ, Díaz A, Puiggalí J (2017) Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(3):27Google Scholar
  14. 14.
    Kaushik M, Moores A (2016) Green chemistry review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis †. Green Chem 18(3):622–637Google Scholar
  15. 15.
    Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377Google Scholar
  16. 16.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315Google Scholar
  17. 17.
    Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69(3):607–611Google Scholar
  18. 18.
    Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205Google Scholar
  19. 19.
    Brhoum A, Dufresne A, Ohlund T, Samyn P (2017) Review of recent research on flexible multifunctional nanopapers: nanocellulose, electrospun nanofiber, and carbon-based nanopapers. NanoscaleGoogle Scholar
  20. 20.
    Xu Z, Li J, Zhou H, Jiang X, Yang C, Wang F, Pan Y, Li N, Li X, Shi L (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Adv 6(49):43626–43633Google Scholar
  21. 21.
    Liu Q, Smalyukh II (2017) Liquid crystalline cellulose-based nematogels. Sci Adv 3(8):e1700981Google Scholar
  22. 22.
    Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85(4):733–737Google Scholar
  23. 23.
    Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B Polym Phys 33(11):1647–1651Google Scholar
  24. 24.
    Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003Google Scholar
  25. 25.
    Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A: Appl Sci Manuf 63(63):35–44Google Scholar
  26. 26.
    Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184Google Scholar
  27. 27.
    Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442Google Scholar
  28. 28.
    Song JW, Chen CJ, Yang Z, Kuang YD, Li T, Li YJ, Huang H, Kierzewski I, Liu BY, He SM, Gao TT, Yuruker SU, Gong A, Yang B, Hu LB (2017) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1):140–147Google Scholar
  29. 29.
    Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756Google Scholar
  30. 30.
    Yang L, Mukhopadhyay A, Jiao Y, Yong Q, Chen L, Xing Y, Hamel J, Zhu H (2017) Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9(32):11452Google Scholar
  31. 31.
    Fan B, Chen S, Yao Q, Sun Q, Jin C (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10(3):311Google Scholar
  32. 32.
    Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Materials 6(3):e93Google Scholar
  33. 33.
    Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254Google Scholar
  34. 34.
    Liu Q, Jing S, Wang S, Zhuo H, Zhong L, Peng X, Sun R (2016) Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline. J Mater Chem A 4(34):13352–13362Google Scholar
  35. 35.
    Wang F, Kim H-J, Park S, Kee C-D, Kim S-J, Oh I-K (2016) Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol 128:33–40Google Scholar
  36. 36.
    Jonoobi M, Harun J, Tahir PM, Shakeri A, SaifulAzry S, Makinejad MD (2011) Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater Lett 65(7):1098–1100Google Scholar
  37. 37.
    Saleh MHSDE, Muhamad MDII, Mamat SNH (2012) In: Cellulose nanofiber isolation and its fabrication into bio-polymer-a review. International conference on agricultural and food engineering for life (Cafei2012), p 28Google Scholar
  38. 38.
    Jiang F, Hsieh Y-L (2013) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2(2):350–359Google Scholar
  39. 39.
    Xu X, Zhou J, Xin Y, Lubineau G, Ma Q, Jiang L (2017) Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci Rep 7(1):4317Google Scholar
  40. 40.
    Barhoum A, Li H, Chen M, Cheng L, Yang W, Dufresne A. Emerging applications of cellulose nanofibers. Handbook of Nanofibers 1–26Google Scholar
  41. 41.
    He Z, Zhang X, Batchelor W (2016) Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv 6(26):21435–21438Google Scholar
  42. 42.
    Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3(4):864–878Google Scholar
  43. 43.
    Khan S, Ulislam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849Google Scholar
  44. 44.
    Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34(10):2421–2427Google Scholar
  45. 45.
    Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS (2018) Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 179:341–349Google Scholar
  46. 46.
    Shibakami M, Tsubouchi G, Nakamura M, Hayashi M (2013) Polysaccharide nanofiber made from euglenoid alga. Carbohydr Polym 93(2):499–505Google Scholar
  47. 47.
    Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482Google Scholar
  48. 48.
    Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel, Switzerland) 6(5):1745Google Scholar
  49. 49.
    Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M, Oksman K, Rojas O (1986) Handbook of green materials processing technologies, properties and applications (in 4 volumes).Neuroendocrinology 44(44):331–337Google Scholar
  50. 50.
    Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412Google Scholar
  51. 51.
    Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107Google Scholar
  52. 52.
    Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437Google Scholar
  53. 53.
    Soni B, Hassan el B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589Google Scholar
  54. 54.
    Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) In: Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp; (United States), ITT Rayonier Inc., Shelton, WAGoogle Scholar
  55. 55.
    Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741Google Scholar
  56. 56.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25Google Scholar
  57. 57.
    Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730Google Scholar
  58. 58.
    Tangnu SK (2014) Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem 17(3):36Google Scholar
  59. 59.
    Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413–2415Google Scholar
  60. 60.
    Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398Google Scholar
  61. 61.
    Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28Google Scholar
  62. 62.
    Delgado-Aguilar M, Tovar IG, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015) Approaching a low-cost production of cellulose nanofibers for papermaking applications. Bioresources 10(3):5345–5355Google Scholar
  63. 63.
    Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4):2238–2247Google Scholar
  64. 64.
    Zhao Y, Moser C, Lindstrom ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519Google Scholar
  65. 65.
    Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79Google Scholar
  66. 66.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441Google Scholar
  67. 67.
    Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I β crystalline domains. Carbohydr Polym 61(2):191–197Google Scholar
  68. 68.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994Google Scholar
  69. 69.
    Shirkavand E, Baroutian S, Gapes DJ, Young BR (2017) Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Convers Manag 142:13–19Google Scholar
  70. 70.
    George J, Ramana KV, Bawa AS (2011) Siddaramaiah, bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57Google Scholar
  71. 71.
    Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102Google Scholar
  72. 72.
    Sari̇oglu OF, Yasa O, Celebi̇oglu A, Uyar T, Teki̇nay T (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15(9):2566–2572Google Scholar
  73. 73.
    Ji S, Hyun BG, Kim K, Sang YL, Kim SH, Kim JY, Song MH, Park JU (2016) Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater 8(8):e299Google Scholar
  74. 74.
    Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283Google Scholar
  75. 75.
    Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3–4):361–367Google Scholar
  76. 76.
    Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. ChemInform 103(11):4419Google Scholar
  77. 77.
    Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575Google Scholar
  78. 78.
    Jin C, Yan R, Huang J (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21(43):17519–17525Google Scholar
  79. 79.
    Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B 51:28–34Google Scholar
  80. 80.
    Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13(2):773–782Google Scholar
  81. 81.
    Lars Wågberg, ; Gero Decher; Magnus Norgren, ; Tom Lindström; Mikael Ankerfors, A.; Axnäs, K., The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes. Langmuir 2008, 24 (3), 784Google Scholar
  82. 82.
    Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22(25):12562–12567Google Scholar
  83. 83.
    Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev:4419–4476Google Scholar
  84. 84.
    Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25(50):504005Google Scholar
  85. 85.
    Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RH (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11(9):1185–1191Google Scholar
  86. 86.
    Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an Optical Sensing Platform. ACS Nano 9(7):7296–7305Google Scholar
  87. 87.
    Cai H, Mu W, Liu W, Zhang X, Deng Y (2015) Sol–gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates. Inorg Chem Commun 51(51):71–74Google Scholar
  88. 88.
    Nguyen HL, Dong SH (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers 8(3):102Google Scholar
  89. 89.
    Olsson RT, Azizi Samir MA, Salazaralvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  3. 3.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  4. 4.Applied and Analytical Chemistry, Institute for Materials Research (IMO-IMOMEC)Hasselt UniversityDiepenbeekBelgium

Personalised recommendations