Engineering Nanofibers as Electrode and Membrane Materials for Batteries, Supercapacitors, and Fuel Cells

  • Liu Haichao
  • Haoyi Li
  • Mahmoud Mohammed Bubakir
  • Weimin YangEmail author
  • Ahmed BarhoumEmail author
Reference work entry


Energy and environment are two major problems facing mankind today. Developing environment-friendly and energy-saving technology has always been the focuses of researchers all over the world. Batteries, supercapacitors, and fuel cells are three widely used or promising devices that can ease the energy and environmental pressures. However, there are still many problems and deficiencies that need to be solved or improved, such as low capacity, low-power density, and poor durability. In order to address these drawbacks, nanofibers are introduced into the application of electrode and electrolyte fabrication because of the high specific surface area, interpenetrating network, and strength. This section will introduce the applications of nanofibers in batteries, supercapacitors, and fuel cells in detail.


Energy production Energy storage Nanofibers Batteries Supercapacitors Fuel cells Electrode materials Membrane materials 


  1. 1.
    Naoi K, Ishimoto S, Miyamoto J-i, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5(11):9363–9373CrossRefGoogle Scholar
  2. 2.
    Dudney NJ, Li J (2015) Using all energy in a battery. Science 347(6218):131–132CrossRefGoogle Scholar
  3. 3.
    Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548CrossRefGoogle Scholar
  4. 4.
    Zeng X, Ge Y, Shen J, Zeng L, Liu Z, Liu W (2017) The optimization of channels for a proton exchange membrane fuel cell applying genetic algorithm. Int J Heat Mass Transf 105:81–89CrossRefGoogle Scholar
  5. 5.
    Ahmadi N, Rezazadeh S, Mirzaee I, Pourmahmoud N (2012) Three-dimensional computational fluid dynamic analysis of the conventional PEM fuel cell and investigation of prominent gas diffusion layers effect. J Mech Sci Technol 26(8):2247–2257CrossRefGoogle Scholar
  6. 6.
    Yin C, Gao J, Wen X, Xie G, Yang C, Fang H et al (2016) In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model. Energy 113:1071–1089CrossRefGoogle Scholar
  7. 7.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699CrossRefGoogle Scholar
  8. 8.
    Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRefGoogle Scholar
  9. 9.
    Roy P, Srivastava SK (2015) Nanostructured anode materials for lithium ion batteries. J Mater Chem A 3(6):2454–2484CrossRefGoogle Scholar
  10. 10.
    Liu D, Cao G (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3(9):1218–1237CrossRefGoogle Scholar
  11. 11.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418CrossRefGoogle Scholar
  12. 12.
    Gu Y, Chen D, Jiao X (2005) Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J Phys Chem B 109(38):17901–17906CrossRefGoogle Scholar
  13. 13.
    Liu Y, Taya M (2009) Electrospinning fabrication and electrochemical properties of lithium cobalt nanofibers for lithium battery cathode. SPIE smart structures and materials+ nondestructive evaluation and health monitoring; 2009: International Society for Optics and PhotonicsGoogle Scholar
  14. 14.
    Gu Y, Chen D, Jiao X, Liu F (2007) LiCoO 2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 17(18):1769–1776CrossRefGoogle Scholar
  15. 15.
    Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew Chem Int Ed 50(28):6278–6282CrossRefGoogle Scholar
  16. 16.
    Hosono E, Wang Y, Kida N, Enomoto M, Kojima N, Okubo M et al (2009) Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl Mater Interfaces 2(1):212–218CrossRefGoogle Scholar
  17. 17.
    Lu Q, Hutchings GS, Zhou Y, Xin HL, Zheng H, Jiao F (2014) Nanostructured flexible Mg-modified LiMnPO 4 matrix as high-rate cathode materials for Li-ion batteries. J Mater Chem A 2(18):6368–6373CrossRefGoogle Scholar
  18. 18.
    Vu NH, Arunkumar P, Im WB (2017) High-performance spinel-rich Li1. 5MnTiO4+ δ ultralong nanofibers as cathode materials for Li-ion batteries. Sci Rep 7:45579CrossRefGoogle Scholar
  19. 19.
    Zhou X, Dai Z, Liu S, Bao J, Guo YG (2014) Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv Mater 26(23):3943–3949CrossRefGoogle Scholar
  20. 20.
    Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3(7):2534–2542CrossRefGoogle Scholar
  21. 21.
    Liu Y, Yan X, Yu Y, Yang X (2015) Self-improving anodes for lithium-ion batteries: continuous interlamellar spacing expansion induced capacity increase in polydopamine-derived nitrogen-doped carbon tubes during cycling. J Mater Chem A 3(42):20880–20885CrossRefGoogle Scholar
  22. 22.
    Cho JS, Lee SY, Kang YC (2016) First introduction of NiSe2 to anode material for sodium-ion batteries: a hybrid of graphene-wrapped NiSe2/C porous nanofiber. Sci Rep 6:23338CrossRefGoogle Scholar
  23. 23.
    Li D, McCann JT, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869CrossRefGoogle Scholar
  24. 24.
    Choi S-S, Lee YS, Joo CW, Lee SG, Park JK, Han K-S (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343CrossRefGoogle Scholar
  25. 25.
    Xiao Q, Li Z, Gao D, Zhang H (2009) A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery. J Membr Sci 326(2):260–264CrossRefGoogle Scholar
  26. 26.
    Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar
  27. 27.
    Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q et al (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources 242:533–540CrossRefGoogle Scholar
  28. 28.
    Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors-an overview. Int J Electrochem Sci 3(11):1196–1217Google Scholar
  29. 29.
    Fritts DH (1997) An analysis of electrochemical capacitors. J Electrochem Soc 144(6):2233–2241CrossRefGoogle Scholar
  30. 30.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  31. 31.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785CrossRefGoogle Scholar
  32. 32.
    Urbina A (2005) Carbon nanotubes and their application to molecular electronics. Electron devices, 2005 Spanish conference on; 2005: IEEEGoogle Scholar
  33. 33.
    Xia X, Hao Q, Lei W, Wang W, Wang H, Wang X (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22(17):8314–8320CrossRefGoogle Scholar
  34. 34.
    Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4(2):1058–1064CrossRefGoogle Scholar
  35. 35.
    Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y et al (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442CrossRefGoogle Scholar
  36. 36.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173CrossRefGoogle Scholar
  37. 37.
    Zhang H, Jiang Y, Hu Y, Maclennan A, Wang H, Wang C (2014) Effect of pyrite in precursor on capacitance behavior of prepared activated carbon. Ind Eng Chem Res 53(24):10125–10132CrossRefGoogle Scholar
  38. 38.
    Pell WG, Conway BE, Adams WA, de Oliveira J (1999) Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications. J Power Sources 80(1):134–141CrossRefGoogle Scholar
  39. 39.
    Wickramaratne NP, Xu J, Wang M, Zhu L, Dai L, Jaroniec M (2014) Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater 26(9):2820–2828CrossRefGoogle Scholar
  40. 40.
    Wang J-G, Yang Y, Huang Z-H, Kang F (2013) Effect of temperature on the pseudo-capacitive behavior of freestanding MnO 2@ carbon nanofibers composites electrodes in mild electrolyte. J Power Sources 224:86–92CrossRefGoogle Scholar
  41. 41.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? ACS Publications, Energy FuelsGoogle Scholar
  42. 42.
    Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C et al (2011) Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior. J Colloid Interface Sci 356(2):706–712CrossRefGoogle Scholar
  43. 43.
    Gao Z, Yang W, Wang J, Wang B, Li Z, Liu Q et al (2012) A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material. Energy Fuel 27(1):568–575CrossRefGoogle Scholar
  44. 44.
    Kim C, Yang K (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218CrossRefGoogle Scholar
  45. 45.
    Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin H-J (2013) Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources 234:285–291CrossRefGoogle Scholar
  46. 46.
    Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235:289–296CrossRefGoogle Scholar
  47. 47.
    Kim B-H, Yang KS, Kim YA, Kim YJ, An B, Oshida K (2011) Solvent-induced porosity control of carbon nanofiber webs for supercapacitor. J Power Sources 196(23):10496–10501CrossRefGoogle Scholar
  48. 48.
    Kim B-H, Yang KS, Ferraris JP (2012) Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta 75:325–331CrossRefGoogle Scholar
  49. 49.
    Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A et al (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19(18):2810–2816CrossRefGoogle Scholar
  50. 50.
    Zhou Z, Wu X-F (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sources 222:410–416CrossRefGoogle Scholar
  51. 51.
    Jung K-H, Ferraris JP (2012) Preparation and electrochemical properties of carbon nanofibers derived from polybenzimidazole/polyimide precursor blends. Carbon 50(14):5309–5315CrossRefGoogle Scholar
  52. 52.
    Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M et al (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300CrossRefGoogle Scholar
  53. 53.
    Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 3(1):212–216CrossRefGoogle Scholar
  54. 54.
    Kim B-H, Kim CH, Yang KS, Rahy A, Yang DJ (2012) Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta 83:335–340CrossRefGoogle Scholar
  55. 55.
    Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V 2 O 5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725CrossRefGoogle Scholar
  56. 56.
    Choi S-H, Hyun T-S, Lee H, Jang S-Y, Oh S-G, Kim I-D (2010) Facile synthesis of highly conductive platinum nanofiber mats as conducting core for high rate redox supercapacitor. Electrochem Solid-State Lett 13(6):A65–AA8CrossRefGoogle Scholar
  57. 57.
    Subramaniam C, Ramya C, Ramya K (2011) Performance of EDLCs using Nafion and Nafion composites as electrolyte. J Appl Electrochem 41(2):197–206CrossRefGoogle Scholar
  58. 58.
    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRefGoogle Scholar
  59. 59.
    Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013) All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 25(29):4035–4042CrossRefGoogle Scholar
  60. 60.
    Wu G, Lin S, Yang C (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275(1):127–133CrossRefGoogle Scholar
  61. 61.
    Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23(29):3251–3255CrossRefGoogle Scholar
  62. 62.
    Miao Y-E, Yan J, Huang Y, Fan W, Liu T (2015) Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 5(33):26189–26196CrossRefGoogle Scholar
  63. 63.
    Haile SM (2003) Materials for fuel cells. Mater Today 6(3):24–29CrossRefGoogle Scholar
  64. 64.
    Guo B, Zhao S, Han G, Zhang L (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53(16):5174–5179CrossRefGoogle Scholar
  65. 65.
    Wang D, Liu Y, Huang J, You T (2012) In situ synthesis of Pt/carbon nanofiber nanocomposites with enhanced electrocatalytic activity toward methanol oxidation. J Colloid Interface Sci 367(1):199–203CrossRefGoogle Scholar
  66. 66.
    Shui J, Chen C, Li J (2011) Evolution of nanoporous Pt–Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction. Adv Funct Mater 21(17):3357–3362CrossRefGoogle Scholar
  67. 67.
    Dever DO, Cairncross RA, Elabd YA (2014) Nanofiber cathode catalyst layer model for a proton exchange membrane fuel cell. J Fuel Cell Sci Technol 11(4):041007CrossRefGoogle Scholar
  68. 68.
    Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352CrossRefGoogle Scholar
  69. 69.
    Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502CrossRefGoogle Scholar
  70. 70.
    Sood R, Cavaliere S, Jones DJ, Rozière J (2016) Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 26:729–745CrossRefGoogle Scholar
  71. 71.
    Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41(13):4569–4572CrossRefGoogle Scholar
  72. 72.
    Dong B, Gwee L, Salas-de La Cruz D, Winey KI, Elabd YA (2010) Super proton conductive high-purity Nafion nanofibers. Nano Lett 10(9):3785–3790CrossRefGoogle Scholar
  73. 73.
    Li H-Y, Liu Y-L (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mater Chem A 1(4):1171–1178CrossRefGoogle Scholar
  74. 74.
    Breitwieser M, Klose C, Klingele M, Hartmann A, Erben J, Cho H et al (2017) Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. J Power Sources 337:137–144CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  3. 3.Department of Mechanical and Electrical Industrial EngineeringGharyan Engineering CollegeGharyanLibya
  4. 4.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  5. 5.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations