Advertisement

Nanofibers as Promising Materials for New Generations of Solar Cells

  • Ahmed Esmail ShalanEmail author
  • Ahmed BarhoumEmail author
  • Ahmed Mourtada Elseman
  • Mohamed Mohamed Rashad
  • Mónica Lira-Cantú
Reference work entry

Abstract

Various applications of nanotechnology have been intended to approach enhanced and efficient solar cell devices with more economically pathways. Effective systems for conversion cost, efficient solar energy storage systems, or solar energy on a large scale are created by efficient solar cells which improved using nanofiber (NF) materials. This chapter provides an overview of photovoltaic and solar cell devices (i.e., dye sensitize solar cells, organic solar cells, and perovskite solar cells) based on nanofibers (NFs) as a key element. Details about the main types of solar cells and their working principles and how engineered NFs are used for solar cells are discussed. The potential application of the three representative NF materials, i.e., metals and metal oxides, carbon, and conductive polymers, were reviewed. The future development of NFs toward next-generation solar cells is finally summarized.

Keywords

Nanofibers Energy harvesting High efficiency Energy conversion Solar cells 

References

  1. 1.
    Ondraczek J, Komendantova N, Patt A (2015) WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew Energy 75:888–898CrossRefGoogle Scholar
  2. 2.
    Ganesh I (2015) Solar fuels vis-à-vis electricity generation from sunlight: the current state-of-the-art (a review). Renew Sust Energ Rev 44:904–932CrossRefGoogle Scholar
  3. 3.
    Allouhi A, Saadani R, Kousksou T, Saidur R, Jamil A, Rahmoune M (2016) Grid-connected PV systems installed on institutional buildings: technology comparison, energy analysis and economic performance. Energ Buildings 130:188–201CrossRefGoogle Scholar
  4. 4.
    Sun H, Deng J, Qiu L, Fang X, Peng H (2015) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8:1139–1159CrossRefGoogle Scholar
  5. 5.
    Crabtree GW, Lewis NS (2007) Solar energy conversion. Phys Today 60:37–42CrossRefGoogle Scholar
  6. 6.
    Scheer H (2002) The solar economy. Earthscan, London. ISBN-13: 978-1844070756, 368 pagesGoogle Scholar
  7. 7.
    Scheer H (2013) The solar economy: renewable energy for a sustainable global future. Taylor & Francis publisher Group, Routledge. ISBN-10: 1844070751Google Scholar
  8. 8.
    Shankar S (2017) Renewable and nonrenewable energy resources: bioenergy and biofuels. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore pp 293–314.  https://doi.org/10.1007/978-981-10-1866-4, ISBN 978-981-10-1866-4Google Scholar
  9. 9.
    (a) Cutz L, Masera O, Santana D, Faaij A (2017) Switching to efficient technologies in traditional biomass intensive countries: the resultant change in emissions. Energy 126:513–526. (b) https://industryhack.com/challenges/fortum/
  10. 10.
    Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505–1514CrossRefGoogle Scholar
  11. 11.
    Perlin J (1999) From space to earth: the story of solar electricity. Earthscan, New YorkGoogle Scholar
  12. 12.
    Hall R (1953) Segregation of impurities during the growth of germanium and silicon. J Phys Chem 57:836–839CrossRefGoogle Scholar
  13. 13.
    Zhu L, Wang L, Pan C, Chen L, Xue F, Chen B, Yang L, Su L, Wang ZL (2017) Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 11:1894–1900CrossRefGoogle Scholar
  14. 14.
    Amarakoon S, Vallet C, Curran MA, Haldar P, Metacarpa D, Fobare D, Bell J (2017) Life cycle assessment of photovoltaic manufacturing consortium (PVMC) copper indium gallium (di) selenide (CIGS) modules. Int J Life Cycle Assess 1–16.  https://doi.org/10.1007/s11367-017-1345-4CrossRefGoogle Scholar
  15. 15.
    Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRefGoogle Scholar
  16. 16.
    Imalka Jayawardena KDG, Rozanski LJ, Mills CA, Beliatis MJ, Aamina Nismy N, Ravi S, Silva P (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411CrossRefGoogle Scholar
  17. 17.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRefGoogle Scholar
  18. 18.
    Jayawardena KD, Rozanski LJ, Mills CA, Beliatis MJ, Nismy NA, Silva SR (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411–8427CrossRefGoogle Scholar
  19. 19.
    Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRefGoogle Scholar
  20. 20.
    Jang J, Lee JS, Hong K-H, Lee D-K, Song S, Kim K, Eo Y-J, Yun JH, Chung C-H (2017) Cu (In, Ga) Se 2 thin film solar cells with solution processed silver nanowire composite window layers: buffer/window junctions and their effects. Sol Energy Mater Sol Cells 170:60–67CrossRefGoogle Scholar
  21. 21.
    (a) Green MA (1982) Solar cells: operating principles, technology, and system applications. (b) Creative Commons Attribution 4.0 License, from Open Stax CNX, “An Introduction to Solar Technology” by Brittany L. Oliva-Chatelain and Andrew R. Barron, https://cnx.org/contents/3QU3ovtd@1/An-Introduction-to-Solar-Cell-. Figure adapted from P. J. Reddy, Science and Technology of Photovoltaics, 2nd edition, CRC Press, Leiden (2010)
  22. 22.
    Mesquita I, Andrade L, Mendes A (in press) Perovskite solar cells: materials, configurations and stability. Renew Sustain Energy Rev.  https://doi.org/10.1016/j.rser.2017.09.011CrossRefGoogle Scholar
  23. 23.
    Siebentritt S (2017) Basics of chalcogenide thin film solar cells, photovoltaic solar energy: from fundamentals to applications, John Wiley & Sons, 169, ISBN: 111892746X, 9781118927465Google Scholar
  24. 24.
    Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J Am Chem Soc 139:356–362CrossRefGoogle Scholar
  25. 25.
    El Baraka A, Abid S, Ennaceri H, Khaldoun A (2016) Building of a PV DSSC small scale prototype based TiO2 nano coating with natural pigment. Renew Sustain Energy Conf.  https://doi.org/10.1109/IRSEC.2016.7983940
  26. 26.
    (a) Wang J, Liu K, Ma L, Zhan X (2016) Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem Rev 116:14675−14725. (b) Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14Google Scholar
  27. 27.
    Jinchu I, Sreekala C, Sreelatha K (2014) Dye sensitized solar cell using natural dyes as chromophores – review. In: Mater Sci Forum. Trans Tech Publ 771:39–51.  https://doi.org/10.4028/www.scientific.net/MSF.771.39CrossRefGoogle Scholar
  28. 28.
    Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. ChemSusChem 1:880–891CrossRefGoogle Scholar
  29. 29.
    Shalan AE, Rashad MM, Yu Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim Acta 89:469–478CrossRefGoogle Scholar
  30. 30.
    Kelen T (2010) SSRL Headlines. Effects of thermal annealing on organic solar cells. http://today.slac.stanford.edu/a/2011/03-01.htm
  31. 31.
    Nagata S, Atkinson GM, Pestov D, Tepper GC, McLeskey JT (2011) Co-planar bi-metallic interdigitated electrode substrate for spin-coated organic solar cells. Sol Energy Mater Sol Cells 95:1594–1597CrossRefGoogle Scholar
  32. 32.
    Umeyama T, Miyata T, Jakowetz AC, Shibata S, Kurotobi K, Higashino T, Koganezawa T, Tsujimoto M, Gélinas S, Matsuda W (2017) Regioisomer effects of [70] fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem Sci 8:181–188CrossRefGoogle Scholar
  33. 33.
    (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J Phys Chem Lett 6:3770–3780. (b) Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Baker RH, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. (c) Xiaoqing J, Ze Y, Yuchen Z, Jianbo L, Jiajia L, Gagik GG, Xichuan Y & Licheng S (2017) Scientific Reports 7:42564  https://doi.org/10.1038/srep42564
  34. 34.
    (a) Pedro VG, Perez EJJ, Arsyad W-S, Barea EM, Santiago FF, Sero IM, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14:888–893. (b) Shalan AE, Oshikiri T, Narra S, Elshanawany MM, Ueno K, Wu H-P, Nakamura K, Shi X, Diau EW-G, Misawa H (2016) Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl Mater Interfaces 8:33592–33600Google Scholar
  35. 35.
    Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRefGoogle Scholar
  36. 36.
    Segets D, Matthew Lucas J, Taylor RNK, Scheele M, Zheng H, Paul Alivisatos A, Peukert W (2012) Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6:9021–9032CrossRefGoogle Scholar
  37. 37.
    Shalan AE, Rashad MM, Youhai Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl Phys A 110:111–122CrossRefGoogle Scholar
  38. 38.
    Feng X (2015) Science, nanocarbons for advanced energy conversion. https://books.google.com.eg/books?isbn=3527336664Google Scholar
  39. 39.
    Shalan AE, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Hui-Ping W, Diau EW-G, Misawa H (2017) Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9:1229–1236CrossRefGoogle Scholar
  40. 40.
    Yang L, Leung WWF (2013) Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater 25:1792–1795CrossRefGoogle Scholar
  41. 41.
    Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells – part I: polymer solar cells. Renew Sust Energ Rev 56:347–361CrossRefGoogle Scholar
  42. 42.
    Kovalenko A, Michal Hrabal M (2017) Printable Solar Cells. In Advances in Solar Cell Materials and Storage. Scrivener Publishing 163–202. ISBN: 9781119283713Google Scholar
  43. 43.
    Nagata S, Atkinson GM, Pestov D, Tepper GC, Mcleskey JT (2013) Electrospun polymer-fiber solar cell. Adv Mater Sci Eng 2013:975947–975953.  https://doi.org/10.1155/2013/975947CrossRefGoogle Scholar
  44. 44.
    Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication. J Phys Chem C 115:4307–4314CrossRefGoogle Scholar
  45. 45.
    Chen J-Y, Chiu Y-C, Shih C-C, Wu W-C, Chen W-C (2015) Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J Mater Chem A 3:15039–15048CrossRefGoogle Scholar
  46. 46.
    (a) Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1:317–323. (b) Chen X, Tang Q, He B (2014) Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Mater Lett 119:28–31Google Scholar
  47. 47.
    Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im SS (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22:21624–21629CrossRefGoogle Scholar
  48. 48.
    Kurniawan M, Salim T, Tai KF, Sun S, Sie EJ, Wu X, Yeow EKL, Huan CHA, Lam YM, Sum TC (2012) Carrier dynamics in polymer nanofiber:fullerene solar cells. J Phys Chem C 116:18015–18022CrossRefGoogle Scholar
  49. 49.
    Kim M, Jo SB, Park JH, Cho K (2015) Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy 18:97–108CrossRefGoogle Scholar
  50. 50.
    Yu G, Gao J, Hummelen J, Wudl F, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  51. 51.
    Sundarrajan S, Murugan R, Nair AS, Ramakrishna S (2010) Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater Lett 64:2369–2372CrossRefGoogle Scholar
  52. 52.
    Solanki A, Wu B, Salim T, Yeow EKL, Lam YM, Sum TC (2014) Performance improvements in polymer nanofiber/fullerene solar cells with external electric field treatment. J Phys Chem C 118:11285–11291CrossRefGoogle Scholar
  53. 53.
    Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y-W, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRefGoogle Scholar
  54. 54.
    Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82CrossRefGoogle Scholar
  55. 55.
    Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480CrossRefGoogle Scholar
  56. 56.
    Sun G, Sun L, Xie H, Liu J (2016) Electrospinning of nanofibers for energy applications. Nanomaterials 6:129.  https://doi.org/10.3390/nano6070129CrossRefGoogle Scholar
  57. 57.
    Aboagye A, Elbohy H, Kelkar AD, Qiao Q, Zai J, Qian X, Zhang L (2015) Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 11:550–556CrossRefGoogle Scholar
  58. 58.
    Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577CrossRefGoogle Scholar
  59. 59.
    Park SH, Jung HR, Lee WJ (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428CrossRefGoogle Scholar
  60. 60.
    Park SH, Kim BK, Lee WJ (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRefGoogle Scholar
  61. 61.
    Mohamed IMA, Motlak M, Akhtar MS, Yasin AS, El-Newehy MH, Al-Deyab SS, Barakat NAM (2016) Synthesis, characterization and performance as a counter electrode for dye-sensitized solar cells of CoCr-decorated carbon nanofibers. Ceram Int 42:146–153CrossRefGoogle Scholar
  62. 62.
    Motlak M, Barakat NAM, Akhtar MS, Hamza AM, Kim BS, Kim CS, Khalil KA, Almajid AA (2015) High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells. Electrochim Acta 160:1–6CrossRefGoogle Scholar
  63. 63.
    Barakat NAM, Shaheer Akhtar M, Yousef A, El-Newehy M, Kim HY (2012) Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J 211–212:9–15CrossRefGoogle Scholar
  64. 64.
    Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY (2013) Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:142–148CrossRefGoogle Scholar
  65. 65.
    Saranya K, Subramania A, Sivasankar N (2015) Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv 5:43611–43619CrossRefGoogle Scholar
  66. 66.
    Jeong I, Lee J, Vincent Joseph KL, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400CrossRefGoogle Scholar
  67. 67.
    Zhang S, Ji C, Bian Z, Yu P, Zhang L, Liu D, Shi E, Shang Y, Peng H, Cheng Q (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6:7191–7198CrossRefGoogle Scholar
  68. 68.
    Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRefGoogle Scholar
  69. 69.
    Wang G, Xing W, Zhuo S (2009) Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J Power Sources 194:568–573CrossRefGoogle Scholar
  70. 70.
    Trung HN, Baik SJ, Jun Y, Lee M, Chung OH, Park JS (2014) Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells. Electrochim Acta 142:144–151CrossRefGoogle Scholar
  71. 71.
    Kim GH, Park SH, Birajdar MS, Lee J, Hong SC (2017) Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. J Ind Eng Chem 52:211–217CrossRefGoogle Scholar
  72. 72.
    Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542CrossRefGoogle Scholar
  73. 73.
    Song MY, Kim DK, Jo SM, Kim DY (2005) Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Met 155:635–638CrossRefGoogle Scholar
  74. 74.
    Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DY (2009) Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J Phys Chem C 113:21453–21457CrossRefGoogle Scholar
  75. 75.
    Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17:1026CrossRefGoogle Scholar
  76. 76.
    Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Met 153:77–80CrossRefGoogle Scholar
  77. 77.
    Hwang D, Kim DY, Jang S-Y, Kim D (2013) Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J Mater Chem A 1:1228–1238CrossRefGoogle Scholar
  78. 78.
    Kavan L (2012) Electrochemistry of titanium dioxide: some aspects and highlights. Chem Rec 12:131–142CrossRefGoogle Scholar
  79. 79.
    Bisquert J, Fabregat-Santiago F (2010) Dye-sensitized solar cells. In: Kalyanasundaram K (ed). CRC Press, Boca Raton, Talyor & Francis group, 320 Pages ISBN 9781439808665 - CAT# N10076Google Scholar
  80. 80.
    Nair AS, Peining Z, Babu VJ, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. PCCP 13:21248–21261CrossRefGoogle Scholar
  81. 81.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRefGoogle Scholar
  82. 82.
    Mohamed IMA, Dao VD, Yasin AS, Mousa HM, Mohamed HO, Choi HS, Hassan MK, Barakat NAM (2016) Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chem Eng J 304:48–60CrossRefGoogle Scholar
  83. 83.
    Mingzheng G, Chunyan C, Jianying H, Shuhui L, Zhong C, Ke-Qin Z, Al-Deyabd SS, Yuekun L (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J Mater Chem A 4:6772–6801Google Scholar
  84. 84.
    Krysova H, Zukal A, Trckova-Barakova J, Chandiran AK, Nazeeruddin MK, Grätzel M, Kavan L (2013) The application of electrospun titania nanofibers in dye-sensitized solar cells. Chimia Int J Chem 67:149–154CrossRefGoogle Scholar
  85. 85.
    (a) Zhou R, Guo W, Yu R, Pan C (2015) Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J Mater Chem A 3:23028–23034. (b) Sawanta SM, Chang SS, Hyungjin K, Pramod SP, Chang KH (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency Nanoscale 8:2664–2677Google Scholar
  86. 86.
    Lo S, Liu Z, Li J, Chan HL, Yan F (2013) Hybrid solar cells based on poly (3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles. Prog Nat Sci Mat Int 23:514–518CrossRefGoogle Scholar
  87. 87.
    Dharani S, Mulmudi HK, Yantara N, Trang PTT, Park NG, Graetzel M, Mhaisalkar S, Mathews N, Boix PP (2014) High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6:1675–1679CrossRefGoogle Scholar
  88. 88.
    Wu S, Tai Q, Yan F (2010) Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C 114(2010):1932–7447Google Scholar
  89. 89.
    Mali SS, Shim CS, Kim H, Patil PS, Hong CK (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8:2664–2677CrossRefGoogle Scholar
  90. 90.
    Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRefGoogle Scholar
  91. 91.
    Neubauer E, Kitzmantel M, Hulman M, Angerer P (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70:2228–2236CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Esmail Shalan
    • 1
    Email author
  • Ahmed Barhoum
    • 2
    Email author
  • Ahmed Mourtada Elseman
    • 4
  • Mohamed Mohamed Rashad
    • 1
  • Mónica Lira-Cantú
    • 3
  1. 1.Electronic and Magnetic Materials Department, Advanced Materials DivisionCentral Metallurgical Research & Development Institute (CMRDI)CairoEgypt
  2. 2.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  3. 3.Nanostructured Materials for Photovoltaic Energy GroupCatalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and the Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
  4. 4.Electronic and Magnetic Laboratory, Advanced Materials DivisionCentral Metallurgical Research & Development Institute (CMRDI)CairoEgypt

Personalised recommendations