Advertisement

Advances in Nanofibers for Antimicrobial Drug Delivery

  • Rahimeh RasouliEmail author
  • Ahmed BarhoumEmail author
Reference work entry

Abstract

Microbial infections are a major threat to public health and a leading cause of death worldwide. New strains of pathogens, such as resistant strains of viruses, bacteria, pathogenic fungi, and protozoa, are causing serious concern. Conventional antimicrobial agents have not shown therapeutic efficacy against multidrug-resistant strains of these pathogens. This review introduces the most popular applications of nanofibers in antimicrobial drug delivery for infectious diseases. Recent investigations of microbial infections, microbial resistance, and the mechanisms of antimicrobial drug resistance are discussed. Furthermore, current developments and future challenges in nanofiber technologies and applications for effective antimicrobial treatment are addressed.

Keywords

Nanofiber Antimicrobial therapy Drug resistance Infectious diseases 

References

  1. 1.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefGoogle Scholar
  2. 2.
    Kenawy E-R et al (2002) Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release 81(1):57–64CrossRefGoogle Scholar
  3. 3.
    Aluigi A et al (2007) Electrospinning of keratin/poly (ethylene oxide) blend nanofibers. J Appl Polym Sci 104(2):863–870CrossRefGoogle Scholar
  4. 4.
    Jiang H et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243CrossRefGoogle Scholar
  5. 5.
    Chew SY et al (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6(4):2017–2024CrossRefGoogle Scholar
  6. 6.
    Kim TG, Lee DS, Park TG (2007) Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). Int J Pharm 338(1):276–283CrossRefGoogle Scholar
  7. 7.
    Pant HR et al (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO 2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185(1):124–130CrossRefGoogle Scholar
  8. 8.
    Lee K, Lee S (2012) Multifunctionality of poly (vinyl alcohol) nanofiber webs containing titanium dioxide. J Appl Polym Sci 124(5):4038–4046CrossRefGoogle Scholar
  9. 9.
    Son B et al (2009) Antibacterial electrospun chitosan/poly (vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. J Appl Polym Sci 111(6):2892–2899CrossRefGoogle Scholar
  10. 10.
    Korina E et al (2013) Multifunctional hybrid materials from poly (3-Hydroxybutyrate), TiO2 nanoparticles, and chitosan oligomers by combining electrospinning/electrospraying and impregnation. Macromol Biosci 13(6):707–716CrossRefGoogle Scholar
  11. 11.
    Shalumon K et al (2011) Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254CrossRefGoogle Scholar
  12. 12.
    Augustine R et al (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):347CrossRefGoogle Scholar
  13. 13.
    Zhang C et al (2015) Synthesis, characterization, and antibacterial activity of Cu NPs embedded electrospun composite nanofibers. Colloid Polym Sci 293(9):2525–2530CrossRefGoogle Scholar
  14. 14.
    Haider A et al (2015) Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 16(1):107Google Scholar
  15. 15.
    Cai N et al (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe 3 O 4 nanoparticles for potential wound dressing application. Appl Surf Sci 369:492–500CrossRefGoogle Scholar
  16. 16.
    Mokhena T, Luyt A (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312CrossRefGoogle Scholar
  17. 17.
    Fouda MM, El-Aassar M, Al-Deyab SS (2013) Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr Polym 92(2):1012–1017CrossRefGoogle Scholar
  18. 18.
    Lee SJ et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537CrossRefGoogle Scholar
  19. 19.
    Xu X, Zhou M (2008) Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym 9(6):685–690CrossRefGoogle Scholar
  20. 20.
    Hong KH et al (2006) Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B Polym Phys 44(17):2468–2474CrossRefGoogle Scholar
  21. 21.
    Schiffman JD, Elimelech M (2011) Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Appl Mater Interfaces 3(2):462–468CrossRefGoogle Scholar
  22. 22.
    Feng K et al (2010) Novel antibacterial nanofibrous PLLA scaffolds. J Control Release 146(3):363–369CrossRefGoogle Scholar
  23. 23.
    Xue J et al (2014) Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35(34):9395–9405CrossRefGoogle Scholar
  24. 24.
    Gilchrist SE et al (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170(1):64–73CrossRefGoogle Scholar
  25. 25.
    Khil MS et al (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679CrossRefGoogle Scholar
  26. 26.
    Unnithan AR et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90(4):1786–1793CrossRefGoogle Scholar
  27. 27.
    Serinçay H et al (2013) PVA/PAA-based antibacterial wound dressing material with aloe vera. Polym-Plast Technol Eng 52(13):1308–1315CrossRefGoogle Scholar
  28. 28.
    Jannesari M et al (2011) Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 6:993–1003Google Scholar
  29. 29.
    Nitanan T et al (2013) Neomycin-loaded poly (styrene sulfonic acid-co-maleic acid)(PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. Int J Pharm 448(1):71–78CrossRefGoogle Scholar
  30. 30.
    Lu A et al (2013) Layer-by-layer structured gelatin nanofiber membranes with photoinduced antibacterial functions. J Appl Polym Sci 128(2):970–975CrossRefGoogle Scholar
  31. 31.
    Çalamak S et al (2014) Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C 43:11–20CrossRefGoogle Scholar
  32. 32.
    Wu J et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRefGoogle Scholar
  33. 33.
    Leekha S, Terrell CL, Edson RS (2011) General principles of antimicrobial therapy. In: Editor-in-Chief: Karl A. Nath, MB, ChB Mayo Clinic proceedings. ElsevierGoogle Scholar
  34. 34.
    Brenner GM, Stevens C (2010) Pharmacology. Saunders Elsevier, Philadelphia. 3td Google ScholarGoogle Scholar
  35. 35.
    Wan YI et al (2008) The wettability and mechanism of geometric non-smooth structure of dragonfly wing surface. J Bionic Eng 5:40–45CrossRefGoogle Scholar
  36. 36.
    Fang Y et al (2007) Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin Sci Bull 52(5):711–716CrossRefGoogle Scholar
  37. 37.
    Hasan J et al (2013) Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol 97(20):9257–9262CrossRefGoogle Scholar
  38. 38.
    Li M, Xu Z (2008) Quercetin in a lotus leaves extract may be responsible for antibacterial activity. Arch Pharm Res 31(5):640–644CrossRefGoogle Scholar
  39. 39.
    Tung WS, Daoud WA (2011) Self-cleaning fibers via nanotechnology: a virtual reality. J Mater Chem 21(22):7858–7869CrossRefGoogle Scholar
  40. 40.
    Sethi S et al (2008) Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett 8(3):822–825CrossRefGoogle Scholar
  41. 41.
    Ball P (1999) Engineering shark skin and other solutions. Nature 400(6744):507–509CrossRefGoogle Scholar
  42. 42.
    Wang J, Vermerris W (2016) Antimicrobial nanomaterials derived from natural products – a review. Materials 9(4):255CrossRefGoogle Scholar
  43. 43.
    Wang S et al (2012) Functionalization of electrospun β-cyclodextrin/polyacrylonitrile (PAN) with silver nanoparticles: broad-spectrum antibacterial property. Appl Surf Sci 261:499–503CrossRefGoogle Scholar
  44. 44.
    Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO2 − biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol 44(14):5672–5676CrossRefGoogle Scholar
  45. 45.
    Rodríguez-Tobías H et al (2014) Novel antibacterial electrospun mats based on poly (D, L-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49(24):8373–8385CrossRefGoogle Scholar
  46. 46.
    Armentano I et al (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014Google Scholar
  47. 47.
    Kim ES, Kim SH, Lee CH (2010) Electrospinning of polylactide fibers containing silver nanoparticles. Macromol Res 18(3):215–221CrossRefGoogle Scholar
  48. 48.
    Tseng Y-Y, Liu S-J (2015) Nanofibers used for the delivery of analgesics. Nanomedicine 10(11):1785–1800CrossRefGoogle Scholar
  49. 49.
    Akbarian S et al (2017) Nano conjugated PLGA-Chlorambucil: synthesis in vitro anti non-Hodgkin’s lymphoma cellular assay. Lett Drug Des Discov 14(7):827–836CrossRefGoogle Scholar
  50. 50.
    Rasouli R et al, Gd 3-asparagine-anionic linear globular dendrimer second generation G2 complexes: novel nano-biohybrid theranostics. Contrast Media & Molecular Imaging Volume 2017, p 19Google Scholar
  51. 51.
    Kebriaezadeh A et al (2016) Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression. Adv Nano Res 4(2):145–156CrossRefGoogle Scholar
  52. 52.
    Ebrahimi SH et al (2015) Investigation of effective factors in preparation of polybutyl cyanoacrylate nanoparticles by emulsion polymerization. New cellular & molecular biotechnology journal 5(19), p 33Google Scholar
  53. 53.
    Rasouli, R. et al (2015) Evaluation of magnetic nanoparticles loaded with cisplatin performance on breast cancer in in vivo and in vitro studies. New cellular & molecular biotechnology journal 5(20), p 29Google Scholar
  54. 54.
    Dias HR et al (2006) Antimicrobial properties of highly fluorinated silver (I) tris (pyrazolyl) borates. J Inorg Biochem 100(1):158–160CrossRefGoogle Scholar
  55. 55.
    Balogh L et al (2001) Dendrimer−silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1):18–21CrossRefGoogle Scholar
  56. 56.
    Sambhy V et al (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30):9798–9808CrossRefGoogle Scholar
  57. 57.
    Shi Z, Neoh K, Kang E (2004) Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities. Langmuir 20(16):6847–6852CrossRefGoogle Scholar
  58. 58.
    Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390CrossRefGoogle Scholar
  59. 59.
    Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71CrossRefGoogle Scholar
  60. 60.
    Han D et al (2017) Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes. Acta Biomater 53:242–249CrossRefGoogle Scholar
  61. 61.
    Tsai G-J, Su W-H (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62(3):239–243CrossRefGoogle Scholar
  62. 62.
    Young DH, Kauss H (1983) Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol 73(3):698–702CrossRefGoogle Scholar
  63. 63.
    Hadwiger L et al (1986) Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Riccardo Muzzarelli Charles Jeuniaux Graham W. Gooday Springer, Boston, MA. Chitin in nature and technology. Springer, pp 209–214Google Scholar
  64. 64.
    Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272CrossRefGoogle Scholar
  65. 65.
    Sebti I, et al (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70(2):M100–M104CrossRefGoogle Scholar
  66. 66.
    Cuero R, Osuji G, Washington A (1991) N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13(6):441–444CrossRefGoogle Scholar
  67. 67.
    Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1):67–77CrossRefGoogle Scholar
  68. 68.
    Helander I et al (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2):235–244CrossRefGoogle Scholar
  69. 69.
    Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247CrossRefGoogle Scholar
  70. 70.
    Rabea EI et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefGoogle Scholar
  71. 71.
    Pan Y et al (2015) Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr Polym 133:229–235CrossRefGoogle Scholar
  72. 72.
    Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178CrossRefGoogle Scholar
  73. 73.
    Zain NM, Stapley A, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112:195–202CrossRefGoogle Scholar
  74. 74.
    Grkovic M et al (2017) Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. Compos Part B Eng 121, pp. 58–67CrossRefGoogle Scholar
  75. 75.
    Ardila N et al (2017) Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria. J Food Sci 82(3):679–686CrossRefGoogle Scholar
  76. 76.
    Liakos IL et al (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nano 7(4):84Google Scholar
  77. 77.
    Tsekova PB et al (2017) Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C 73:206–214CrossRefGoogle Scholar
  78. 78.
    Roemhild K et al (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34(22):1767–1771CrossRefGoogle Scholar
  79. 79.
    Fernandes SC et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5(8):3290–3297CrossRefGoogle Scholar
  80. 80.
    Saini S, Belgacem MN, Bras J (2017) Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater Sci Eng C 75:760–768CrossRefGoogle Scholar
  81. 81.
    Huang ZM et al (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A 77(1):169–179CrossRefGoogle Scholar
  82. 82.
    Thakur R et al (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364(1):87–93CrossRefGoogle Scholar
  83. 83.
    He CL et al (2006) Coaxial electrospun poly (L-lactic acid) ultrafine fibers for sustained drug delivery. J Macromol Sci B 45(4):515–524CrossRefGoogle Scholar
  84. 84.
    Katti DS et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70(2):286–296CrossRefGoogle Scholar
  85. 85.
    Said SS et al (2011) Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria. Eur J Pharm Biopharm 79(1):108–118CrossRefGoogle Scholar
  86. 86.
    Zahedi P et al (2012) Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly (lactic acid)/poly (ϵ-caprolactone) blends. J Appl Polym Sci 124(5):4174–4183CrossRefGoogle Scholar
  87. 87.
    Parwe SP et al (2014) Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation. Int J Nanomedicine 9:1463Google Scholar
  88. 88.
    Qi R et al (2013) Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly (lactic-co-glycolic acid) composite nanofibers. Colloids Surf B: Biointerfaces 110:148–155CrossRefGoogle Scholar
  89. 89.
    Khampieng T, Wnek GE, Supaphol P (2014) Electrospun DOXY-h loaded-poly (acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J Biomater Sci Polym Ed 25(12):1292–1305CrossRefGoogle Scholar
  90. 90.
    Yang H et al (2014) Antibacterials loaded electrospun composite nanofibers: release profile and sustained antibacterial efficacy. Polym Chem 5(6):1965–1975CrossRefGoogle Scholar
  91. 91.
    Wang S et al (2012) Encapsulation of amoxicillin within laponite-doped poly (lactic-co-glycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Appl Mater Interfaces 4(11):6393–6401CrossRefGoogle Scholar
  92. 92.
    Kim SS, Lee J (2014) Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers. Carbohydr Polym 102:231–237CrossRefGoogle Scholar
  93. 93.
    Koushki P, Bahrami SH, Ranjbar-Mohammadi M (2017) Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties. J Ind Text. 47 p. 1528083716674906Google Scholar
  94. 94.
    Zheng F et al (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers. Biomaterials 34(4):1402–1412CrossRefGoogle Scholar
  95. 95.
    Aytac Z et al (2014) Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf B: Biointerfaces 120:125–131CrossRefGoogle Scholar
  96. 96.
    Monteiro N et al (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205CrossRefGoogle Scholar
  97. 97.
    Bonan RF et al (2015) In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377CrossRefGoogle Scholar
  98. 98.
    Park J-A, Kim S-B (2015) Preparation and characterization of antimicrobial electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. React Funct Polym 93:30–37CrossRefGoogle Scholar
  99. 99.
    Bölgen N et al (2007) In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B Appl Biomater 81(2):530–543CrossRefGoogle Scholar
  100. 100.
    Blakney AK et al (2013) Electrospun fibers for vaginal anti-HIV drug delivery. Antivir Res 100:S9–S16CrossRefGoogle Scholar
  101. 101.
    Grooms TN et al (2016) Griffithsin-modified electrospun fibers as a delivery scaffold to prevent HIV infection. Antimicrob Agents Chemother 60(11):6518–6531CrossRefGoogle Scholar
  102. 102.
    Aniagyei SE et al (2017) Evaluation of poly (lactic-co-glycolic acid) and poly (dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection. Mater Sci Eng C 72:238–251CrossRefGoogle Scholar
  103. 103.
    Krogstad EA, Woodrow KA (2014) Manufacturing scale-up of electrospun poly (vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. Int J Pharm 475(1):282–291CrossRefGoogle Scholar
  104. 104.
    Santos VAd et al (2014) Antifungal effect of electrospun nanofibers containing cetylpyridinium chloride against Candida albicans. Braz Oral Res 28(1):1–6Google Scholar
  105. 105.
    Harini S et al (2016) Antifungal properties of lecithin-and terbinafine-loaded electrospun poly (ε-caprolactone) nanofibres. RSC Adv 6(47):41130–41141CrossRefGoogle Scholar
  106. 106.
    Veras FF et al (2016) Inhibition of filamentous fungi by ketoconazole-functionalized electrospun nanofibers. Eur J Pharm Sci 84:70–76CrossRefGoogle Scholar
  107. 107.
    Mir AS et al (2014) Development and characterization of clotrimazole loaded electrospun nanofibers for the management of oral candidiasis. J Nanopharm Drug Deliv 2(3):192–198CrossRefGoogle Scholar
  108. 108.
    Paskiabi FA et al (2017) Terbinafine-loaded wound dressing for chronic superficial fungal infections. Mater Sci Eng C 73:130–136CrossRefGoogle Scholar
  109. 109.
    Vashisth P et al (2013) Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J Bioact Compat Polym 28(6):652–665CrossRefGoogle Scholar
  110. 110.
    du Plessis DM et al (2013) Immobilization of commercial hydrolytic enzymes on poly (acrylonitrile) nanofibers for anti-biofilm activity. J Chem Technol Biotechnol 88(4):585–593CrossRefGoogle Scholar
  111. 111.
    Jang CH et al (2015) Antibacterial effect of electrospun polycaprolactone/polyethylene oxide/vancomycin nanofiber mat for prevention of periprosthetic infection and biofilm formation. Int J Pediatr Otorhinolaryngol 79(8):1299–1305CrossRefGoogle Scholar
  112. 112.
    Ashbaugh AG et al (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci. 113, pp. E6919–E6928CrossRefGoogle Scholar
  113. 113.
    Dibrov P et al (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–2670CrossRefGoogle Scholar
  114. 114.
    Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116CrossRefGoogle Scholar
  115. 115.
    Lok C-N et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924CrossRefGoogle Scholar
  116. 116.
    Li X-Z, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179(19):6127–6132CrossRefGoogle Scholar
  117. 117.
    Graves Jr JL et al (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6: P 42Google Scholar
  118. 118.
    Baier C (2008) Bacterial resistance to silver (nano or otherwise)Google Scholar
  119. 119.
    Rawashdeh R, Haik Y (2009) Antibacterial mechanisms of metallic nanoparticles: a review. Dyn Biochem Process Biotechnol Mol Biol 3(2):12–20Google Scholar
  120. 120.
    Klueh U et al (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res A 53(6):621–631CrossRefGoogle Scholar
  121. 121.
    Kumar R, Howdle S, Münstedt H (2005) Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J Biomed Mater Res B Appl Biomater 75(2):311–319CrossRefGoogle Scholar
  122. 122.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353CrossRefGoogle Scholar
  123. 123.
    Li Z et al (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22(24):9820–9823CrossRefGoogle Scholar
  124. 124.
    Voccia S et al (2006) Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization. Langmuir 22(20):8607–8613CrossRefGoogle Scholar
  125. 125.
    Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056CrossRefGoogle Scholar
  126. 126.
    Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434CrossRefGoogle Scholar
  127. 127.
    Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9(10):2677–2681CrossRefGoogle Scholar
  128. 128.
    Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145CrossRefGoogle Scholar
  129. 129.
    Huang Z et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144CrossRefGoogle Scholar
  130. 130.
    Chakraborti S et al (2014) Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids Surf B: Biointerfaces 121:44–53CrossRefGoogle Scholar
  131. 131.
    Reddy LS et al (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52(11):1388–1397CrossRefGoogle Scholar
  132. 132.
    Jin T et al (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157: H7. J Food Sci 74(1):M46–M52CrossRefGoogle Scholar
  133. 133.
    Kasraei S et al (2014) Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 39(2):109–114CrossRefGoogle Scholar
  134. 134.
    Liu Y et al (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201CrossRefGoogle Scholar
  135. 135.
    Applerot G et al (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2(6):2314–2321CrossRefGoogle Scholar
  136. 136.
    Reddy KM et al (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(21):213902CrossRefGoogle Scholar
  137. 137.
    Palanikumar L, Ramasamy S, Balachandran C (2014) Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol 8(2):111–117CrossRefGoogle Scholar
  138. 138.
    Firdhouse MJ, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015, p 18Google Scholar
  139. 139.
    Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanoparticles with microbes – a physio and biochemical assay. J Biomed Nanotechnol 7(6):813–822CrossRefGoogle Scholar
  140. 140.
    Hwang SH et al (2011) Electrospun ZnO/TiO 2 composite nanofibers as a bactericidal agent. Chem Commun 47(32):9164–9166CrossRefGoogle Scholar
  141. 141.
    Yalcinkaya F, Lubasova D (2017) Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers. Polym Adv Technol 28(1):137–140CrossRefGoogle Scholar
  142. 142.
    Sundararaj SC et al (2013) Design of a multiple drug delivery system directed at periodontitis. Biomaterials 34(34):8835–8842CrossRefGoogle Scholar
  143. 143.
    Blakney AK et al (2014) Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int J Nanomedicine 9:2967CrossRefGoogle Scholar
  144. 144.
    Falde EJ et al (2015) Layered superhydrophobic meshes for controlled drug release. J Control Release 214:23–29CrossRefGoogle Scholar
  145. 145.
    Ball C, Woodrow KA (2014) Electrospun fibers for microbicide drug delivery. In: Drug delivery and development of anti-HIV microbicides, Pan Stanford Publishing Pte. Ltd, Singapore pp 459–507Google Scholar
  146. 146.
    Owens Jr RC, Shorr AF (2009) Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies. Am J Health Syst Pharm 66:S23–S30CrossRefGoogle Scholar
  147. 147.
    Liu G et al (1999) Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers – preparation, characterization, and liquid crystalline properties. Chem Eur J 5(9):2740–2749CrossRefGoogle Scholar
  148. 148.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRefGoogle Scholar
  149. 149.
    Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746CrossRefGoogle Scholar
  150. 150.
    Feng L et al (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem 114(7):1269–1271CrossRefGoogle Scholar
  151. 151.
    Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research 46(1): 60–72CrossRefGoogle Scholar
  152. 152.
    Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. EPL (Eur Lett) 42(2):215CrossRefGoogle Scholar
  153. 153.
    Deitzel J et al (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42(19):8163–8170CrossRefGoogle Scholar
  154. 154.
    Fong H, Reneker DH (2001) Electrospinning and the formation of nanofibers. Vol. 6: chapterGoogle Scholar
  155. 155.
    DeRiso AJ et al (1996) Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest 109(6):1556–1561CrossRefGoogle Scholar
  156. 156.
    Xu W, Yang W, Yang Y (2009) Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery. Biotechnol Prog 25(6):1788–1795Google Scholar
  157. 157.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042CrossRefGoogle Scholar
  158. 158.
    Chen DW et al (2012) Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm 430(1):335–341CrossRefGoogle Scholar
  159. 159.
    Zong X et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRefGoogle Scholar
  160. 160.
    Zhang Y et al (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16(10):933–946CrossRefGoogle Scholar
  161. 161.
    Manuel CBJ, Jesús VGL, Aracely SM (2016) Electrospinning for drug delivery systems: drug incorporation techniques. In Electrospinning-Material, Techniques, and Biomedical Applications. In Tech. Edited by Sajjad Haider and Adnan Haider.Google Scholar
  162. 162.
    Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997Google Scholar
  163. 163.
    Zhang Z et al (2015) Controlled antibiotics release system through simple blended electrospun fibers for sustained antibacterial effects. ACS Appl Mater Interfaces 7(48):26400–26404CrossRefGoogle Scholar
  164. 164.
    De Faria AF et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl Mater Interfaces 7(23):12751–12759CrossRefGoogle Scholar
  165. 165.
    Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym 113:561–568CrossRefGoogle Scholar
  166. 166.
    Kalwar K et al (2016) Coaxial electrospinning of polycaprolactone@ chitosan: characterization and silver nanoparticles incorporation for antibacterial activity. React Funct Polym 107:87–92CrossRefGoogle Scholar
  167. 167.
    Zhang L et al (2012) Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices 9(6):595–612CrossRefGoogle Scholar
  168. 168.
    Park JH et al (2013) Poly (vinyl alcohol)/montmorillonite/silver hybrid nanoparticles prepared from aqueous solutions by the electrospraying method. J Compos Mater 47(27):3367–3378CrossRefGoogle Scholar
  169. 169.
    Sridhar R et al (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814CrossRefGoogle Scholar
  170. 170.
    Sharma J et al (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7(2):186–219CrossRefGoogle Scholar
  171. 171.
    McDonald PF et al (2010) In vitro degradation and drug release from polymer blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone). J Mater Sci 45(5):1284–1292CrossRefGoogle Scholar
  172. 172.
    Piskin E et al (2007) Electrospun matrices made of poly (α-hydroxy acids) for medical useCrossRefGoogle Scholar
  173. 173.
    Okuda T, Tominaga K, Kidoaki S (2010) Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 143(2):258–264CrossRefGoogle Scholar
  174. 174.
    Cui W et al (2006) Investigation of drug release and matrix degradation of electrospun poly (DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629CrossRefGoogle Scholar
  175. 175.
    Buschle-Diller G et al (2007) Release of antibiotics from electrospun bicomponent fibers. Cellulose 14(6):553–562CrossRefGoogle Scholar
  176. 176.
    Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48(17):5030–5041CrossRefGoogle Scholar
  177. 177.
    Xie Z, Buschle-Diller G (2010) Electrospun poly (D, L-lactide) fibers for drug delivery: the influence of cosolvent and the mechanism of drug release. J Appl Polym Sci 115(1):1–8CrossRefGoogle Scholar
  178. 178.
    Zamani M et al (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75(2):179–185CrossRefGoogle Scholar
  179. 179.
    Wei Q (2012) Functional nanofibers and their applications. Elsevier Woodhead Publishing,Sawston, CambridgeGoogle Scholar
  180. 180.
    Yu D-G et al (2009) Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 20(5):055104CrossRefGoogle Scholar
  181. 181.
    Ignatious F et al (2010) Electrospun nanofibers in oral drug delivery. Pharm Res 27(4):576–588CrossRefGoogle Scholar
  182. 182.
    Bhandari J et al (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomedicine 12:2021CrossRefGoogle Scholar
  183. 183.
    Knockenhauer KE et al (2008) Protective antigen composite nanofibers as a transdermal anthrax vaccine. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th annual international conference of the IEEE. IEEEGoogle Scholar
  184. 184.
    Ngawhirunpat T et al (2009) Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent. Pharm Dev Technol 14(1):73–82CrossRefGoogle Scholar
  185. 185.
    Yun J et al (2011) Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J 47(10):1893–1902CrossRefGoogle Scholar
  186. 186.
    Wang L et al (2012) Fabrication of magnetic drug-loaded polymeric composite nanofibres and their drug release characteristics. RSC Adv 2(6):2433–2438CrossRefGoogle Scholar
  187. 187.
    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006CrossRefGoogle Scholar
  188. 188.
    Manoukian OS et al (2017) Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues. Biomed Nanotechnol: Methods Protocols, 1570: pp 261–278Google Scholar
  189. 189.
    Chen H, Hsieh YL (2004) Ultrafine hydrogel fibers with dual temperature-and pH-responsive swelling behaviors. J Polym Sci A Polym Chem 42(24):6331–6339CrossRefGoogle Scholar
  190. 190.
    Cao S, Hu B, Liu H (2009) Synthesis of pH-responsive crosslinked poly [styrene-co-(maleic sodium anhydride)] and cellulose composite hydrogel nanofibers by electrospinning. Polym Int 58(5):545–551CrossRefGoogle Scholar
  191. 191.
    Qi M et al (2008) Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur J Pharm Biopharm 70(2):445–452CrossRefGoogle Scholar
  192. 192.
    Cui W et al (2008) Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm 361(1):47–55Google Scholar
  193. 193.
    Yuan Z et al (2014) Ibuprofen-loaded electrospun fibrous scaffold doped with sodium bicarbonate for responsively inhibiting inflammation and promoting muscle wound healing in vivo. Biomater Sci 2(4):502–511CrossRefGoogle Scholar
  194. 194.
    Jiang J et al (2014) Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10(3):1324–1332CrossRefGoogle Scholar
  195. 195.
    Aguilar LE et al (2017) On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomedicine 13(2):527–538CrossRefGoogle Scholar
  196. 196.
    Hu J et al (2016) Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci 105(3):1104–1112CrossRefGoogle Scholar
  197. 197.
    Xu M-R et al (2015) Facile fabrication of P (OVNG-co-NVCL) thermoresponsive double-hydrophilic glycopolymer nanofibers for sustained drug release. Colloids Surf B Biointerfaces 135:209–216CrossRefGoogle Scholar
  198. 198.
    Pawar MD et al (2015) Bioactive thermoresponsive polyblend nanofiber formulations for wound healing. Mater Sci Eng C 48:126–137CrossRefGoogle Scholar
  199. 199.
    Lv Y et al (2017) Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release. J Pharm Sci 106, pp.1258–1265CrossRefGoogle Scholar
  200. 200.
    Liu L et al (2016) Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater Sci Eng C 67:581–589CrossRefGoogle Scholar
  201. 201.
    De Sousa FB et al (2010) Photo-response behavior of electrospun nanofibers based on spiropyran-cyclodextrin modified polymer. J Mater Chem 20(44):9910–9917CrossRefGoogle Scholar
  202. 202.
    Fu G-D et al (2009) Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces 1(11):2424–2427CrossRefGoogle Scholar
  203. 203.
    Abidian MR, Kim DH, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18(4):405–409CrossRefGoogle Scholar
  204. 204.
    Wang M et al (2004) Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45(16):5505–5514CrossRefGoogle Scholar
  205. 205.
    Savva I et al (2013) Fabrication, characterization, and evaluation in drug release properties of magnetoactive poly (ethylene oxide)–poly (l-lactide) electrospun membranes. Biomacromolecules 14(12):4436–4446CrossRefGoogle Scholar
  206. 206.
    Hergt R et al (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270(3):345–357CrossRefGoogle Scholar
  207. 207.
    Chunder A et al (2007) Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Colloids Surf B Biointerfaces 58(2):172–179CrossRefGoogle Scholar
  208. 208.
    Pilliar RM (2005) Cementless implant fixation—toward improved reliability. Orthop Clin N Am 36(1):113–119CrossRefGoogle Scholar
  209. 209.
    Liu H, Zhen M, Wu R (2007) Ionic-strength-and pH-responsive poly [acrylamide-co-(maleic acid)] hydrogel nanofibers. Macromol Chem Phys 208(8):874–880CrossRefGoogle Scholar
  210. 210.
    Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24(2):93–115Google Scholar
  211. 211.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703CrossRefGoogle Scholar
  212. 212.
    Vargas ET et al (2010) Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 6(3):1069–1078CrossRefGoogle Scholar
  213. 213.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621CrossRefGoogle Scholar
  214. 214.
    Meinel AJ et al (2012) Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm 81(1):1–13CrossRefGoogle Scholar
  215. 215.
    Elsner JJ, Zilberman M (2009) Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomater 5(8):2872–2883CrossRefGoogle Scholar
  216. 216.
    Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–792CrossRefGoogle Scholar
  217. 217.
    Picheth GF et al (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol MacromolGoogle Scholar
  218. 218.
    de Oliveira Barud HG et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRefGoogle Scholar
  219. 219.
    Fux CA et al (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1(4):667–683CrossRefGoogle Scholar
  220. 220.
    Wolcott R et al (2010) Biofilm-based wound care. Adv Wound Care 1(3):311–318Google Scholar
  221. 221.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefGoogle Scholar
  222. 222.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefGoogle Scholar
  223. 223.
    Osmon DR et al (2012) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis, 56 p cis803Google Scholar
  224. 224.
    Kurtz SM et al (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(8):61–65. e1CrossRefGoogle Scholar
  225. 225.
    Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429CrossRefGoogle Scholar
  226. 226.
    Baddour LM, Cha Y-M, Wilson WR (2012) Infections of cardiovascular implantable electronic devices. N Engl J Med 367(9):842–849CrossRefGoogle Scholar
  227. 227.
    Liu C et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis, 52 p ciq146Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical Nanotechnology, International CampusTehran University of Medical SciencesTehranIran
  2. 2.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance

Personalised recommendations