Nanofibrous Scaffolds for Tissue Engineering Application

  • Sakthivel Nagarajan
  • S. Narayana Kalkura
  • Sebastien Balme
  • Celine Pochat Bohatier
  • Philippe Miele
  • Mikhael Bechelany
Reference work entry


Regeneration of damaged or malfunctioning tissues or organs is important goal of tissue engineering. Various techniques such as cell sheet engineering, cell spheroids, scaffold assisted methods and 3D printing of the cells with polymers have been tested in tissue engineering. Among these techniques, scaffold assisted method is extensively employed as it acts as a supporting matrix for the cells, providing suitable microenvironment to facilitate the cell attachment, proliferation and differentiation. In this context, designing scaffolds which mimics extracellular matrix (ECM) is essential to regenerate the damaged tissues and organs. The electrospinning technique is a versatile tool to fabricate ECM mimicking scaffolds. ECMs obtained using this technique are highly desired due to their excellent physical properties such as high surface area. High surface area assists in immobilizing bulk quantity of biomolecules like growth factors, enzymes, and drugs which provide favorable microenvironment to cells. Hence, the electrospinning is a suitable tool in regenerative tissue engineering. This chapter discusses about the importance of electrospun polymer fibers for regeneration of various tissues including bone, cartilage, heart muscles, liver and neural tissues. Influence of properties such as surface chemistry, mechanical properties and porosity on gene expression of stem cell will be addressed. The impact of biomolecule immobilization, electrospun fiber size, fiber orientation and fiber morphology on stem cell differentiation is also discussed. The performance of biopolymer and synthetic degradable polymer based electrospun fibers in tissue engineering will also be briefly reported.


Scaffolds Regenerative tissue engineering Biopolymers Drug delivery 


  1. 1.
    Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G et al (2016) Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials 83:169–181CrossRefGoogle Scholar
  2. 2.
    Yamato M, Okano T (2004) Cell sheet engineering. Mater Today 7:42–47CrossRefGoogle Scholar
  3. 3.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  4. 4.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefGoogle Scholar
  5. 5.
    Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine: Nanotechnol Biol Med 2:37–41Google Scholar
  6. 6.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  7. 7.
    Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46CrossRefGoogle Scholar
  8. 8.
    Tong H-W, Wang M (2007) Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. J Nanosci Nanotechnol 7:3834–3840CrossRefGoogle Scholar
  9. 9.
    Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241CrossRefGoogle Scholar
  10. 10.
    Li W-J, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686–1693CrossRefGoogle Scholar
  11. 11.
    Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J ChemGoogle Scholar
  12. 12.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRefGoogle Scholar
  13. 13.
    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263CrossRefGoogle Scholar
  14. 14.
    Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRefGoogle Scholar
  15. 15.
    Nagarajan S, Pochat-Bohatier C, Teyssier C, Balme S, Miele P, Kalkura N et al (2016) Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv 6:109150–109156CrossRefGoogle Scholar
  16. 16.
    Kim SJ, Yang DH, Chun HJ, Chae GT, Jang JW, Shim YB (2013) Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol Res 21:931–939CrossRefGoogle Scholar
  17. 17.
    West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244CrossRefGoogle Scholar
  18. 18.
    Malliaras K, Kreke M, Marbán E (2011) The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther 90:532–541CrossRefGoogle Scholar
  19. 19.
    Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N et al (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34:362–379CrossRefGoogle Scholar
  20. 20.
    Bhowmick S, Scharnweber D, Koul V (2016) Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials 88:83–96CrossRefGoogle Scholar
  21. 21.
    Kai D, Wang Q-L, Wang H-J, Prabhakaran MP, Zhang Y, Tan Y-Z et al (2014) Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater 10:2727–2738CrossRefGoogle Scholar
  22. 22.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefGoogle Scholar
  23. 23.
    Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRefGoogle Scholar
  24. 24.
    Asghar A, Henrickson RL (1982) Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res 28:231–372CrossRefGoogle Scholar
  25. 25.
    Narayanan N, Jiang C, Uzunalli G, Thankappan SK, Laurencin CT, Deng M (2016) Polymeric electrospinning for musculoskeletal regenerative engineering. Regen Eng Transl Med 2:69–84CrossRefGoogle Scholar
  26. 26.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRefGoogle Scholar
  27. 27.
    Shih Y-RV, Chen C-N, Tsai S-W, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397CrossRefGoogle Scholar
  28. 28.
    Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B et al (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338CrossRefGoogle Scholar
  29. 29.
    Song J-H, Kim H-E, Kim H-W (2008) Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19:2925–2932CrossRefGoogle Scholar
  30. 30.
    Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771CrossRefGoogle Scholar
  31. 31.
    Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D et al (2015) Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed Res Int 2015:10Google Scholar
  32. 32.
    Zhiwei R, Shiqing M, Le J, Zihao L, Deping L, Xu Z et al (2017) Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 9:025036CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72B:156–165CrossRefGoogle Scholar
  34. 34.
    Kwak S, Haider A, Gupta KC, Kim S, Kang I-K (2016) Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering. Nanoscale Res Lett 11:323CrossRefGoogle Scholar
  35. 35.
    Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C et al (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339CrossRefGoogle Scholar
  36. 36.
    Shao W, He J, Sang F, Ding B, Chen L, Cui S et al (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRefGoogle Scholar
  37. 37.
    Niu B, Li B, Gu Y, Shen X, Liu Y, Chen L (2017) In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. J Biomater Sci Polym Ed 28:257–270CrossRefGoogle Scholar
  38. 38.
    Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124CrossRefGoogle Scholar
  39. 39.
    Chen J-P, Chen S-H, Lai G-J (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7:170CrossRefGoogle Scholar
  40. 40.
    Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRefGoogle Scholar
  41. 41.
    Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRefGoogle Scholar
  42. 42.
    Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH et al (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRefGoogle Scholar
  43. 43.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  44. 44.
    Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthorn P, Pavasant P, Supaphol P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440CrossRefGoogle Scholar
  45. 45.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  46. 46.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  47. 47.
    Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 133:n/a–n/aGoogle Scholar
  48. 48.
    Amaral IF, Lamghari M, Sousa SR, Sampaio P, Barbosa MA (2005) Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation. J Biomed Mater Res A 75A:387–397CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRefGoogle Scholar
  50. 50.
    Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559CrossRefGoogle Scholar
  51. 51.
    Filion TM, Kutikov A, Song J (2011) Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg Med Chem Lett 21:5067–5070CrossRefGoogle Scholar
  52. 52.
    Romero R, Chubb L, Travers JK, Gonzales TR, Ehrhart NP, Kipper MJ (2015) Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydr Polym 122:144–151CrossRefGoogle Scholar
  53. 53.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539CrossRefGoogle Scholar
  54. 54.
    Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRefGoogle Scholar
  55. 55.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082CrossRefGoogle Scholar
  56. 56.
    Jiang W, Shi J, Li W, Sun K (2012) Morphology, wettability, and mechanical properties of polycaprolactone/hydroxyapatite composite scaffolds with interconnected pore structures fabricated by a mini-deposition system. Polym Eng Sci 52:2396–2402CrossRefGoogle Scholar
  57. 57.
    Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246CrossRefGoogle Scholar
  58. 58.
    Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534CrossRefGoogle Scholar
  59. 59.
    Guo Z, Xu J, Ding S, Li H, Zhou C, Li L (2015) In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed 26:989–1001CrossRefGoogle Scholar
  60. 60.
    Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977CrossRefGoogle Scholar
  61. 61.
    Li T-T, Ebert K, Vogel J, Groth T (2013) Comparative studies on osteogenic potential of micro- and nanofibre scaffolds prepared by electrospinning of poly(ε-caprolactone). Prog Biomater 2:13CrossRefGoogle Scholar
  62. 62.
    Scaglione S, Guarino V, Sandri M, Tampieri A, Ambrosio L, Quarto R (2012) In vivo lamellar bone formation in fibre coated MgCHA–PCL-composite scaffolds. J Mater Sci Mater Med 23:117–128CrossRefGoogle Scholar
  63. 63.
    Chen X, Ergun A, Gevgilili H, Ozkan S, Kalyon DM, Wang H (2013) Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures. Biomaterials 34:8203–8212CrossRefGoogle Scholar
  64. 64.
    Rong D, Chen P, Yang Y, Li Q, Wan W, Fang X et al (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 7:6CrossRefGoogle Scholar
  65. 65.
    Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X et al (2016) Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci 148:139–144CrossRefGoogle Scholar
  66. 66.
    Wutticharoenmongkol P, Pavasant P, Supaphol P (2007) Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules 8:2602–2610CrossRefGoogle Scholar
  67. 67.
    Nandakumar A, Yang L, Habibovic P, van Blitterswijk C (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26:7380–7387CrossRefGoogle Scholar
  68. 68.
    Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137:154–161CrossRefGoogle Scholar
  69. 69.
    Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK et al (2006) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493CrossRefGoogle Scholar
  70. 70.
    Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M et al (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2:142CrossRefGoogle Scholar
  71. 71.
    Yu H-S, Jang J-H, Kim T-I, Lee H-H, Kim H-W (2009) Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A 88A:747–754CrossRefGoogle Scholar
  72. 72.
    Li X, Xie J, Yuan X, Xia Y (2008) Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24:14145–14150CrossRefGoogle Scholar
  73. 73.
    Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRefGoogle Scholar
  74. 74.
    Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z et al (2013) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34:735–745CrossRefGoogle Scholar
  75. 75.
    Spadaccio C, Rainer A, Trombetta M, Vadalá G, Chello M, Covino E et al (2009) Poly-l-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37:1376–1389CrossRefGoogle Scholar
  76. 76.
    Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res A 79A:307–317CrossRefGoogle Scholar
  77. 77.
    Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893CrossRefGoogle Scholar
  78. 78.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377CrossRefGoogle Scholar
  79. 79.
    Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22:1873–1884CrossRefGoogle Scholar
  80. 80.
    Li D, Sun H, Jiang L, Zhang K, Liu W, Zhu Y et al (2014) Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl Mater Interfaces 6:9402–9410CrossRefGoogle Scholar
  81. 81.
    Lyu S, Huang C, Yang H, Zhang X (2013) Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31:1382–1389CrossRefGoogle Scholar
  82. 82.
    Zhang H (2011) Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Polym 26:347–362CrossRefGoogle Scholar
  83. 83.
    Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang I-K et al (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng 100:43–49CrossRefGoogle Scholar
  84. 84.
    Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362CrossRefGoogle Scholar
  85. 85.
    Yeh L-C, Dai C-F, Yeh J-M, Hsieh P-Y, Wei Y, Chin T-Y et al (2013) Neat poly(ortho-methoxyaniline) electrospun nanofibers for neural stem cell differentiation. J Mater Chem B 1:5469–5477CrossRefGoogle Scholar
  86. 86.
    Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E et al (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35:4769–4781CrossRefGoogle Scholar
  87. 87.
    Zhang K, Zheng H, Liang S, Gao C (2016) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142CrossRefGoogle Scholar
  88. 88.
    Doyle AD, Yamada KM (2016) Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp Cell Res 343:60–66CrossRefGoogle Scholar
  89. 89.
    Christopherson GT, Song H, Mao H-Q (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30:556–564CrossRefGoogle Scholar
  90. 90.
    Wang A, Tang Z, Park I-H, Zhu Y, Patel S, Daley GQ et al (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–5032CrossRefGoogle Scholar
  91. 91.
    Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S et al (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39CrossRefGoogle Scholar
  92. 92.
    Li W, Guo Y, Wang H, Shi D, Liang C, Ye Z et al (2008) Electrospun nanofibers immobilized with collagen for neural stem cells culture. J Mater Sci Mater Med 19:847–854CrossRefGoogle Scholar
  93. 93.
    Cho YI, Choi JS, Jeong SY, Yoo HS (2010) Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 6:4725–4733CrossRefGoogle Scholar
  94. 94.
    Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507CrossRefGoogle Scholar
  95. 95.
    Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335CrossRefGoogle Scholar
  96. 96.
    Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J et al (2016) Development of bioresorbable hydrophilic–hydrophobic electrospun scaffolds for neural tissue engineering. Biomacromolecules 17:3172–3187CrossRefGoogle Scholar
  97. 97.
    Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F et al (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8:e74417CrossRefGoogle Scholar
  98. 98.
    Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB et al (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75CrossRefGoogle Scholar
  99. 99.
    Wang G, Hu X, Lin W, Dong C, Wu H (2011) Electrospun PLGA–silk fibroin–collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev Biol Anim 47:234–240CrossRefGoogle Scholar
  100. 100.
    Prabhakaran MP, Venugopal JR, Ter Chyan T, Hai LB, Chan CK, Lim AY, Ramakrisha S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797CrossRefGoogle Scholar
  101. 101.
    Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85:149–156CrossRefGoogle Scholar
  102. 102.
    Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110:2775–2784CrossRefGoogle Scholar
  103. 103.
    Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82:307–315CrossRefGoogle Scholar
  104. 104.
    Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B et al (2014) Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35:1205–1214CrossRefGoogle Scholar
  105. 105.
    Han J, Wu Q, Xia Y, Wagner MB, Xu C (2016) Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 16:740–750CrossRefGoogle Scholar
  106. 106.
    Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z et al (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114CrossRefGoogle Scholar
  107. 107.
    Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B:379–386CrossRefGoogle Scholar
  108. 108.
    Kang B-J, Kim H, Lee SK, Kim J, Shen Y, Jung S et al (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 10:3007–3017CrossRefGoogle Scholar
  109. 109.
    Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel Wagner H et al (2013) Spring-like fibers for cardiac tissue engineering. Biomaterials 34:8599–8606CrossRefGoogle Scholar
  110. 110.
    Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH et al (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protocol 4:155–173CrossRefGoogle Scholar
  111. 111.
    Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354CrossRefGoogle Scholar
  112. 112.
    Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N et al (2014) Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35:7346–7354CrossRefGoogle Scholar
  113. 113.
    Hsiao C-W, Bai M-Y, Chang Y, Chung M-F, Lee T-Y, Wu C-T et al (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34:1063–1072CrossRefGoogle Scholar
  114. 114.
    Chung H-J, Kim J-T, Kim H-J, Kyung H-W, Katila P, Lee J-H et al (2015) Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J Control Release 205:218–230CrossRefGoogle Scholar
  115. 115.
    Molamma PP, Dan K, Laleh G-M, Seeram R (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 6:055001CrossRefGoogle Scholar
  116. 116.
    Masoumi N, Annabi N, Assmann A, Larson BL, Hjortnaes J, Alemdar N et al (2014) Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 35:7774–7785CrossRefGoogle Scholar
  117. 117.
    Yang Liu YX, Zhenhua W, Dezhong W, Wentian Z, Sebastian S, Haiyan L, Yao C, Song X (2016) Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. Am J Transl Res 8(4):1678–1694Google Scholar
  118. 118.
    Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243–248Google Scholar
  119. 119.
    Ye J, Shi X, Chen X, Xie J, Wang C, Yao K et al (2014) Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. J Mater Chem B 2:4226–4236CrossRefGoogle Scholar
  120. 120.
    Deshpande P, Ramachandran C, Sefat F, Mariappan I, Johnson C, McKean R et al (2013) Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials 34:5088–5106CrossRefGoogle Scholar
  121. 121.
    Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S (2015) Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed 26:1139–1151CrossRefGoogle Scholar
  122. 122.
    Tonsomboon K, Oyen ML (2013) Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21:185–194CrossRefGoogle Scholar
  123. 123.
    Ortega Í, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F (2013) Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater 9:5511–5520CrossRefGoogle Scholar
  124. 124.
    Kong B, Sun W, Chen G, Tang S, Li M, Shao Z et al (2017) Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci Rep 7:970CrossRefGoogle Scholar
  125. 125.
    Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E et al (2013) Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 116:312–323CrossRefGoogle Scholar
  126. 126.
    Acun A, Hasirci V (2014) Construction of a collagen-based, split-thickness cornea substitute. J Biomater Sci Polym Ed 25:1110–1132CrossRefGoogle Scholar
  127. 127.
    Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R (2014) Surface-modified electrospun poly(ε-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction PCL scaffold in ocular surface engineering. Invest Ophthalmol Vis Sci 55:899–907CrossRefGoogle Scholar
  128. 128.
    Tucker BA, Redenti SM, Jiang C, Swift JS, Klassen HJ, Smith ME et al (2010) The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31:9–19CrossRefGoogle Scholar
  129. 129.
    Zhang C, Wen J, Yan J, Kao Y, Ni Z, Cui X et al (2015) In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv 5:12123–12130CrossRefGoogle Scholar
  130. 130.
    Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell ALM, Kyriakides TR, Saltzman WM (2013) An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 34:3891–3901CrossRefGoogle Scholar
  131. 131.
    Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29:587–596CrossRefGoogle Scholar
  132. 132.
    Huang R, Li W, Lv X, Lei Z, Bian Y, Deng H et al (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75CrossRefGoogle Scholar
  133. 133.
    Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRefGoogle Scholar
  134. 134.
    Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRefGoogle Scholar
  135. 135.
    Kang YO, Yoon I-S, Lee SY, Kim D-D, Lee SJ, Park WH et al (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92B:568–576Google Scholar
  136. 136.
    Yao C-H, Yeh J-Y, Chen Y-S, Li M-H, Huang C-H (2017) Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J Tissue Eng Regen Med 11:905–915CrossRefGoogle Scholar
  137. 137.
    Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67B:675–679CrossRefGoogle Scholar
  138. 138.
    Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S et al (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157CrossRefGoogle Scholar
  139. 139.
    Grant R, Hay DC, Callanan A (2017) A drug-induced hybrid electrospun poly-capro-lactone: cell-derived extracellular matrix scaffold for liver tissue engineering. Tissue Eng A 23:650–662CrossRefGoogle Scholar
  140. 140.
    Naresh K, Utpal B (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 7:045004CrossRefGoogle Scholar
  141. 141.
    Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L et al (2017) Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Interfaces 9:14716–14723CrossRefGoogle Scholar
  142. 142.
    Liu Y, Li H, Yan S, Wei J, Li X (2014) Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15:1044–1054CrossRefGoogle Scholar
  143. 143.
    Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N et al (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 24:278–287CrossRefGoogle Scholar
  144. 144.
    Bishi DK, Guhathakurta S, Venugopal JR, Cherian KM, Ramakrishna S (2014) Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. J Mater Sci Mater Med 25:2579–2589CrossRefGoogle Scholar
  145. 145.
    Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRefGoogle Scholar
  146. 146.
    Xu H, Cai S, Xu L, Yang Y (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470CrossRefGoogle Scholar
  147. 147.
    Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236CrossRefGoogle Scholar
  148. 148.
    Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH et al (2012) Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 13:2287–2298CrossRefGoogle Scholar
  149. 149.
    Wang Z, Wang Y, Zhang P, Chen X (2015) Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv 5:96725–96732CrossRefGoogle Scholar
  150. 150.
    Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W et al (2013) Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 34:2624–2631CrossRefGoogle Scholar
  151. 151.
    Subramanian A, Vu D, Larsen GF, Lin H-Y (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polym Ed 16:861–873CrossRefGoogle Scholar
  152. 152.
    Deng J, Wang Y, Zhou L, Gou M, Luo N, Chen H et al (2015) Fabrication and in vivo chondrification of a poly(propylene carbonate)/l-lactide-grafted tetracalcium phosphate electrospun scaffold for cartilage tissue engineering. RSC Adv 5:42943–42954CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sakthivel Nagarajan
    • 1
    • 2
  • S. Narayana Kalkura
    • 2
  • Sebastien Balme
    • 4
  • Celine Pochat Bohatier
    • 1
  • Philippe Miele
    • 1
    • 3
  • Mikhael Bechelany
    • 5
  1. 1.Institute of European MembranesIEM UMR-5635, University of Montpellier, ENSCM, CNRSMontpellierFrance
  2. 2.Crystal Growth CentreAnna UniversityChennaiIndia
  3. 3.Institut Universitaire de France (IUF)University of MESRIParisFrance
  4. 4.Institute of European Membranes (IEM)University of MontpellierMontpellierFrance
  5. 5.Institut Européen desMembranesIEM – UMR 5635, ENSCM, CNRS, Univ MontpellierMontpellierFrance

Personalised recommendations