Carbohydrate-Based Nanofibers: Applications and Potentials

  • Sajad Bahrami
  • Moein Adel
  • Fariba Esmaeili
  • Seyed Mahdi Rezayat
  • Bita Mehravi
  • Masoumeh ZahmatkeshanEmail author
Reference work entry


Carbohydrate polymers have recently attracted great interest from academia and industry as one of the most abundant polymers in the world. Homopolymers or copolymers of monosaccharides, known as polysaccharides, are important part of carbohydrates and polymer materials with different sources from plants, microbes, and animals. Various structures and sources provide different chemical and mechanical properties and in result different applications. Carbohydrates are inexpensive materials, easily available, and renewable resources which present important characteristics including hydrophilicity and biocompatibility into polymeric systems. In this chapter potentials and applications of carbohydrate materials such as chitosan, chitin, cellulose, and alginate or their combinations in nanofiber form will be reviewed.


Carbohydrate Nanofibers Applications 


  1. 1.
    Zhao W et al (2015) Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications. J Biomed Mater Res A 103(2):807–818CrossRefGoogle Scholar
  2. 2.
    Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601CrossRefGoogle Scholar
  3. 3.
    Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032CrossRefGoogle Scholar
  4. 4.
    Nie H et al (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9(5):1362–1365CrossRefGoogle Scholar
  5. 5.
    Lee YJ et al (2007) Preparation of atactic poly (vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. J Appl Polym Sci 106(2):1337–1342CrossRefGoogle Scholar
  6. 6.
    De Vrieze S et al (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42(19):8029–8034CrossRefGoogle Scholar
  7. 7.
    Ojha SS et al (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9(9):2523–2529CrossRefGoogle Scholar
  8. 8.
    Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188CrossRefGoogle Scholar
  9. 9.
    Liu H, Hsieh YL (2003) Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. J Polym Sci B Polym Phys 41(9):953–964CrossRefGoogle Scholar
  10. 10.
    Wu X et al (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97(3):1292–1297CrossRefGoogle Scholar
  11. 11.
    Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482CrossRefGoogle Scholar
  12. 12.
    Nasri-Nasrabadi B et al (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238CrossRefGoogle Scholar
  13. 13.
    Toskas G et al (2013) Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94(2):713–722CrossRefGoogle Scholar
  14. 14.
    Tang J et al (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308CrossRefGoogle Scholar
  15. 15.
    Luo Y et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427CrossRefGoogle Scholar
  16. 16.
    Nie H et al (2011) Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydr Polym 85(3):681–686CrossRefGoogle Scholar
  17. 17.
    Du J et al (2014) Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr Polym 99:483–490CrossRefGoogle Scholar
  18. 18.
    Deng H et al (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80(2):474–479CrossRefGoogle Scholar
  19. 19.
    Majd SA et al (2016) Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol 92:1162–1168CrossRefGoogle Scholar
  20. 20.
    Entekhabi E et al (2016) Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 69:380–387CrossRefGoogle Scholar
  21. 21.
    Jeong SI et al (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10(8):934–943CrossRefGoogle Scholar
  22. 22.
    Jeong SI et al (2012) Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur Cell Mater 24:331CrossRefGoogle Scholar
  23. 23.
    Kaya M et al (2016) Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT-Food Sci Technol 65:1109–1117CrossRefGoogle Scholar
  24. 24.
    Abdelgawad AM et al (2017) Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int J Biol Macromol 94:96–105CrossRefGoogle Scholar
  25. 25.
    Bienek DR, Hoffman KM, Tutak W (2016) Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties. J Mater Sci Mater Med 27(9):146CrossRefGoogle Scholar
  26. 26.
    Lee SJ et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537CrossRefGoogle Scholar
  27. 27.
    Song J et al (2016) Antibacterial effects of electrospun chitosan/poly (ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine 12(5):1357–1364CrossRefGoogle Scholar
  28. 28.
    Cai N et al (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe 3 O 4 nanoparticles for potential wound dressing application. Appl Surf Sci 369:492–500CrossRefGoogle Scholar
  29. 29.
    Kaassis AY et al (2014) Pulsatile drug release from electrospun poly (ethylene oxide)–sodium alginate blend nanofibres. J Mater Chem B 2(10):1400–1407CrossRefGoogle Scholar
  30. 30.
    Shi X et al (2014) pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4(87):47056–47065CrossRefGoogle Scholar
  31. 31.
    Yu D-G et al (2012) Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym 90(2):1016–1023CrossRefGoogle Scholar
  32. 32.
    Ma H et al (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976CrossRefGoogle Scholar
  33. 33.
    Ma H, Hsiao BS, Chu B (2011) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1(1):213–216CrossRefGoogle Scholar
  34. 34.
    Li Y et al (2016) Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem 59(1):95–105CrossRefGoogle Scholar
  35. 35.
    Li L, Li Y, Yang C (2016) Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr Polym 140:299–307CrossRefGoogle Scholar
  36. 36.
    Li Z et al (2016) Preparation of chitosan/polycaprolactam nanofibrous filter paper and its greatly enhanced chromium (VI) adsorption. Colloids Surf A Physicochem Eng Asp 494:65–73CrossRefGoogle Scholar
  37. 37.
    Wang L et al (2016) Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv 6(107):105988–105995CrossRefGoogle Scholar
  38. 38.
    Min L-L et al (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6:32480CrossRefGoogle Scholar
  39. 39.
    Cui G et al (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRefGoogle Scholar
  40. 40.
    Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429CrossRefGoogle Scholar
  41. 41.
    Gomathi P et al (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153(1):44–49CrossRefGoogle Scholar
  42. 42.
    El-Moghazy A et al (2016) Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 155:258–264CrossRefGoogle Scholar
  43. 43.
    Pourjavaher S et al (2017) Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleracea) extract. Carbohydr Polym 156:193–201CrossRefGoogle Scholar
  44. 44.
    Liou P et al (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650CrossRefGoogle Scholar
  45. 45.
    Srbová J et al (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRefGoogle Scholar
  46. 46.
    Park J-M et al (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43CrossRefGoogle Scholar
  47. 47.
    Doğaç Yİ et al (2017) A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. Int J Biol Macromol 96:302–311CrossRefGoogle Scholar
  48. 48.
    Huang X-J, Ge D, Xu Z-K (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718CrossRefGoogle Scholar
  49. 49.
    Xu W et al (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion electrospinning. J Mech Behav Biomed Mater 65:428–438CrossRefGoogle Scholar
  50. 50.
    Chae T et al (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med 24(8):1885–1894CrossRefGoogle Scholar
  51. 51.
    Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium Sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8(10):6379–6390CrossRefGoogle Scholar
  52. 52.
    Pillay V et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:789289CrossRefGoogle Scholar
  53. 53.
    Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501CrossRefGoogle Scholar
  54. 54.
    Reddy SM (2017) Membrane technologies for sensing and biosensing. In: Materials for chemical sensing, . pp 75–103. Springer, HindawiGoogle Scholar
  55. 55.
    Sulaiman S et al (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175(4):1817–1842CrossRefGoogle Scholar
  56. 56.
    Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sajad Bahrami
    • 1
    • 2
  • Moein Adel
    • 5
    • 4
    • 3
  • Fariba Esmaeili
    • 3
  • Seyed Mahdi Rezayat
    • 3
    • 6
  • Bita Mehravi
    • 8
    • 1
  • Masoumeh Zahmatkeshan
    • 7
    • 8
    • 1
    Email author
  1. 1.Department of Medical Nanotechnology, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
  2. 2.Student Research CommitteeIran University of Medical SciencesTehranIran
  3. 3.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  4. 4.Deputy of Research and Technology, School of MedicineIran University of Medical SciencesTehranIran
  5. 5.Department of Medical Nanotechnology, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
  6. 6.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
  7. 7.Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
  8. 8.Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran

Personalised recommendations