Structural Multifunctional Nanofibers and Their Emerging Applications

  • Dalapathi GugulothuEmail author
  • Ahmed BarhoumEmail author
  • Syed Muzammil Afzal
  • Banoth Venkateshwarlu
  • Hassan Uludag
Reference work entry


Nanofibers are an exciting new class of nanomaterials (NMs) produced by using innovative manufacturing process technologies. Nanofibers are developed from a wide variety of materials of diverse architecture and nature. Nanofibers are divided into the following classes: (1) based on the raw material, nanofibers are classified into organic, inorganic, and carbon and composite fibers, and (2) based on the structure, nanofibers are divided into nonporous, mesoporous, hollow, and core-shell fibers. The geometrical shape (structure) of the fiber materials can be tuned from the non-woven web, yarn, to bulk structures using nanofiber fabrication techniques. Nanofibers have been widely used in a range of applications, such as energy generation, production, and storage, environmental protection and improvement, tissue engineering, pharmaceutical, and biomedical applications. This chapter discusses the nanofibers’ types, structures, fabrication techniques, inherent properties, and how these properties affect their potential usage.


Nanostructured fibers Mesoporous nanofibers Hallow nanofibers Core-shell nanofibers Natural nanofibers Engineered nanofibers 


  1. 1.
    Zheng MH, Zhang Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  2. 2.
    Rathinamoorthy R (2012) Nanofiber for drug delivery system: principle and application. Pak Text J 61:45–48Google Scholar
  3. 3.
    Frenot A, Ioannis SC (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  4. 4.
    Hyuk SY, Taek GK, Tae GP (2009) Surface-functioned electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042CrossRefGoogle Scholar
  5. 5.
    Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRefGoogle Scholar
  6. 6.
    Huang MZ, Zhang YZ, Kotaki S, Ramakrishna M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253Google Scholar
  7. 7.
    Liu G, Zhengbiao G, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 252(28):95–107CrossRefGoogle Scholar
  8. 8.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRefGoogle Scholar
  9. 9.
    Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44CrossRefGoogle Scholar
  10. 10.
    Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as Uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 2004(16):361–366CrossRefGoogle Scholar
  11. 11.
    Rho KS, Jeong L, Lee G, Seo BM et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461CrossRefGoogle Scholar
  12. 12.
    Han I, Shim KJ, Kim JY, Im SU et al (2007) Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs 31:801–808CrossRefGoogle Scholar
  13. 13.
    Huang CY, Hu KH, Wei ZH (2016) Comparison of cell behavior on PVA / PVA-gelatin electrospun nanofibers with random and aligned configuration. Sci Report 6:37960. Scholar
  14. 14.
    Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094CrossRefGoogle Scholar
  15. 15.
    Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRefGoogle Scholar
  16. 16.
    Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRefGoogle Scholar
  17. 17.
    Meng ZX, Zheng W, Li L, Zhenga YF (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125:601–611CrossRefGoogle Scholar
  18. 18.
    Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333CrossRefGoogle Scholar
  19. 19.
    Zhang JF, Wang Y, Lam ML, McKinnnie RJ et al (2017) Cross-linked poly (lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies. Materialstoday 13:306–317Google Scholar
  20. 20.
    Thanvel R, Seong SAA (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662Google Scholar
  21. 21.
    Garry EW, Marcus EC, David GS, Garry LB (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRefGoogle Scholar
  22. 22.
    Wnek G, Carr M, Simpson D, Bowlin G (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216CrossRefGoogle Scholar
  23. 23.
    Nedjari S, AwajaF AG (2017) Three dimensional honeycomb patterned fibrinogen based Nanofbers induce substantial osteogenic response of mesenchymal stem cells. Sci Report.
  24. 24.
    Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3:1–9CrossRefGoogle Scholar
  25. 25.
    Neal RA, McClugage SG, Link MC, Sefcik LS et al (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21CrossRefGoogle Scholar
  26. 26.
    Kijenska E, Prabhakaran MP, Swieszkowski W et al (2014) Interaction of Schwann cells with laminin encapsulated PLCL core–shell nanofibers for nerve tissue engineering. Eur Polym J 50:30–38CrossRefGoogle Scholar
  27. 27.
    Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792CrossRefGoogle Scholar
  28. 28.
    Um IC, Fang D, Hsiao BS et al (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436CrossRefGoogle Scholar
  29. 29.
    Brenner EK, Schiffman JD, Thompson EA et al (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohyd Polym 87:926–929CrossRefGoogle Scholar
  30. 30.
    Ge S, Shi X, Sun K, Li C, Uher C et al (2009) Facile hydrothermal synthesis of Iron oxide nanoparticles with Tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRefGoogle Scholar
  31. 31.
    Wang HG, Yuan S, Long Ma D et al (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681CrossRefGoogle Scholar
  32. 32.
    Wang H, Ma D, Huang X, Huang Y, Zhang X (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Report 2:701CrossRefGoogle Scholar
  33. 33.
    Nguyen M, Nguyen D, BuiThe H, Le Y (2016) CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci Report.
  34. 34.
    Peng C, Zhang J, Xiong Z, Zhao Z, Liu P (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropo Mesopor Mater 215:133–142CrossRefGoogle Scholar
  35. 35.
    Yongliang WH, Yanfei Z, Ling Z et al (2010) Preparation of TiO2 hollow nanofibers by electrospinning combined with sol–gel process. Cryst Eng comm 12:2256–2260CrossRefGoogle Scholar
  36. 36.
    Lee SS, Bai H, Liu Z, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydro Enegy 37:10575–10584CrossRefGoogle Scholar
  37. 37.
    Xia X, Dong XJ, Wei QF, Cai YB et al (2012) Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Expres Polym Lett 2:169–176CrossRefGoogle Scholar
  38. 38.
    Du H, Wang J, Sun Y, Yao P, Li X, Yu N (2015) Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma. Sensor Actuator B: Chem 206:753–763CrossRefGoogle Scholar
  39. 39.
    Yan X, Tai Z, Chen Z, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for super capacitor. Nanoscale 3:212–216CrossRefGoogle Scholar
  40. 40.
    Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Nano Energy 2:138–145CrossRefGoogle Scholar
  41. 41.
    Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K (2001) Vapor-grown carbon fibers (VGCFs) – basic properties and their battery applications. Carbon 39:1287–1297CrossRefGoogle Scholar
  42. 42.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  43. 43.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319CrossRefGoogle Scholar
  44. 44.
    Chen Q, Wu W, Zhao Y, Xi M et al (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos Part B Eng 58:43–53CrossRefGoogle Scholar
  45. 45.
    Miyagaw H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615CrossRefGoogle Scholar
  46. 46.
    Mordkovich VZ (2003) Carbon nanofibers: a new ultra high-strength material for chemical technology. Theor Found Chem Eng 37:429–438CrossRefGoogle Scholar
  47. 47.
    Kim YA, Hayashi T, Fukai Y, Endo M et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355:279–284CrossRefGoogle Scholar
  48. 48.
    Endo M, Kim YA, Hayashi T, Fukai Y et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1279CrossRefGoogle Scholar
  49. 49.
    Reneker D, Chun I (1996) Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnol 7:216–223CrossRefGoogle Scholar
  50. 50.
    Xiangcun L, Vijay TJ, Gaohong H, Jibao H et al (2012) Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. J Mater Chem 22:17476CrossRefGoogle Scholar
  51. 51.
    Zhang Z, Lieber CM (1993) Nanotube structure and electronic properties probed by STM. Appl Phys Lett 62:2972–2974Google Scholar
  52. 52.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151CrossRefGoogle Scholar
  53. 53.
    Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibres by electrospinning. Nano Lett 4:933–938CrossRefGoogle Scholar
  54. 54.
    Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y et al (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20:5095–5099CrossRefGoogle Scholar
  55. 55.
    Jiang H, Hu Y, Li Y, Zhao P et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243CrossRefGoogle Scholar
  56. 56.
    Lee BS, Park KM, Yu WR, Youk JH (2012) An effective method for manufacturing hollow carbon nanofibers and microstructural analysis. Macromol Res 20:605–613CrossRefGoogle Scholar
  57. 57.
    Lee GH, Song JC, Yoon KB (2010) Controlled wall thickness and porosity of polymeric hallow nanofibers by coaxial electrospinning. Macromol Res 18:571–576CrossRefGoogle Scholar
  58. 58.
    Ahmed GED, Nasser AMB, Khalil AK, Hak YK (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38:198–205CrossRefGoogle Scholar
  59. 59.
    Li L, Peng S, Lee JKY, Ji D et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRefGoogle Scholar
  60. 60.
    Baizeng F, Jung HK, Cheolgyu L, Jong-Sung Y (2008) Hollow macroporous Core/mesoporous Shell carbon with a tailored structure as a cathode electro catalyst support for proton exchange membrane fuel cells. J Phys Chem C112:639–645Google Scholar
  61. 61.
    Sihui Z, Dairong C, Xiuling J, Caihong T (2006) Long TiO2 hollow Fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110:11199–11204CrossRefGoogle Scholar
  62. 62.
    Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14:59–65CrossRefGoogle Scholar
  63. 63.
    Nayani K, Katepalli H, Sharma CS, Sharma A et al (2012) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow sub micrometer polymer fibers. Ind Eng Chem Res 51:1761–1766CrossRefGoogle Scholar
  64. 64.
    Chunrong X, Moon JK, Kenneth JB (2006) TiO2 nanofibers and Core–Shell structures prepared using mesoporous molecular sieves as templates. Small 2:52–55CrossRefGoogle Scholar
  65. 65.
    Liangmiao Z, Wencong L, Rongrong C, Shanshan S (2010) One-pot template-free synthesis of mesoporous boehmite core–shell and hollow spheres by a simple solvo thermal route. Mater Res Bull 45:429–436CrossRefGoogle Scholar
  66. 66.
    Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X (2014) Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics 258:67–73CrossRefGoogle Scholar
  67. 67.
    Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26:1127–1132CrossRefGoogle Scholar
  68. 68.
    Xiong C, Kenneth JB (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140CrossRefGoogle Scholar
  69. 69.
    Zhuo HT, Hu JL, Chen SJ (2011) Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Polym Lett 5(2):182–187CrossRefGoogle Scholar
  70. 70.
    Zhang YZ, Venugopal J, Huang Z, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589CrossRefGoogle Scholar
  71. 71.
    Li D, Mccann JT, Xia Y (2005) Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 1:83–86CrossRefGoogle Scholar
  72. 72.
    Zhang J, Yang D, Xu F, Zhang Z et al (2009) Electrospun core shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42:5278–5284CrossRefGoogle Scholar
  73. 73.
    Wenqi L, Shuyi M, Yingfeng L, Guijin Y et al (2015) Enhanced ethanol sensing performance of hollow ZnO–SnO2core–shell nanofibers. Sensor Actuator B Chem 211:392–402CrossRefGoogle Scholar
  74. 74.
    Nair S, Erik H, Seong HK (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18:5155–5161CrossRefGoogle Scholar
  75. 75.
    Xinhong Z, Chaoqun S, Lin G, Shanmu D, Xiao C et al (2011) Mesoporous coaxial titanium nitride-vanadium nitride Fibers of Core-shell structures for high-performance super capacitors. ACS Appl Mater Interface 3:3058–3063CrossRefGoogle Scholar
  76. 76.
    Li F, Zhao Y, Song Y (2010) Core-chell nanofibers: nano channel and capsule by coaxial electrospinning. Nanotechnology and nanomaterials Nanofibers Ashok Kumar, INTECH, Croatia, isbn: 978-953-7619-86-2Google Scholar
  77. 77.
    Xiaomin S, Weiping Z, Delong M, Qian M et al (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater. Scholar
  78. 78.
    Guiru S, Liqun S, Haiming X, Jia L (2016) Electrospinning of nanofibers for energy applications. Nano 6:129Google Scholar
  79. 79.
    Xu H, Hun X, Sun Y, Luo W, Chen C, Liu Y, Huangn Y (2014) Highly porous Li4Ti5O12/carbon nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171CrossRefGoogle Scholar
  80. 80.
    Seeram R, Kazutoshi F, Teo WE, Yong T et al (2006) Electrospun nanofibers solving global issues. Materialtoday 9:40–50Google Scholar
  81. 81.
    Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:1–29CrossRefGoogle Scholar
  82. 82.
    Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRefGoogle Scholar
  83. 83.
    Martin et al (1989) US Patent 4878908Google Scholar
  84. 84.
    Berry JP (1990) US Patent 4965110Google Scholar
  85. 85.
    Stenoien et al (1999) US Patent 5866217Google Scholar
  86. 86.
    Scopelianos AG (1996) US Patent 5522879Google Scholar
  87. 87.
    Verreck G, Chun I, Rosenblatt J (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non biodegradable polymer. J Control Release 92:349–360CrossRefGoogle Scholar
  88. 88.
    Rajesh V, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30CrossRefGoogle Scholar
  89. 89.
    Hoerstrup SP, Vacanti JP (2004) Overview of tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ (eds) Biomaterial science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 712–727Google Scholar
  90. 90.
    Li WJ, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621CrossRefGoogle Scholar
  91. 91.
    Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  92. 92.
    Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2007) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2:1–15CrossRefGoogle Scholar
  93. 93.
    Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4:659–668CrossRefGoogle Scholar
  94. 94.
    Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770CrossRefGoogle Scholar
  95. 95.
    Laurencin CT, Ko FK (2004) Hybrid nanofibril matrices for use as tissue engineering devices. US patent 6689166Google Scholar
  96. 96.
    Laurencin CT, Nair LS, Bhattacharyya S, Allcock HR, et al (2005) Polymeric nanofibers for tissue engineering and drug delivery. US patent 7235295Google Scholar
  97. 97.
    Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol 6:2591–2607CrossRefGoogle Scholar
  98. 98.
    Lee S, Jin G, Jang JH (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:30–59CrossRefGoogle Scholar
  99. 99.
    Yun ZL, Meng L, Changzhi G et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442CrossRefGoogle Scholar
  100. 100.
    Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier--an overview. Artif Cells Nanomed Biotechnol 44:135–143CrossRefGoogle Scholar
  101. 101.
    Matthew DB, Dmitry L (2007) Nanofiber-based drug delivery. In: Thassu D, Michel D, Yashwant P (eds) Nanoparticulate drug delivery systems, vol 166. Informa Healthcare USA, Inc., New York, pp 61–69Google Scholar
  102. 102.
    Gibson P, Schreuder Gibson H, Rivin D (1999) Electrospun fiber mats: transport properties. AICHE J 45:190–195CrossRefGoogle Scholar
  103. 103.
    Gu L, Zhou D, Cao JC (2016) Piezoelectric active humidity sensors based on lead-free NaNbO3Piezoelectric nanofibers. Sensors 16:833CrossRefGoogle Scholar
  104. 104.
    Huang ZM, Kotaki M, Ramakrishna S (2003) Innovations 3(3):30Google Scholar
  105. 105.
    Xiaomin S, Weiping Z, Delong M (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomat. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dalapathi Gugulothu
    • 1
    Email author
  • Ahmed Barhoum
    • 2
    Email author
  • Syed Muzammil Afzal
    • 3
  • Banoth Venkateshwarlu
    • 4
  • Hassan Uludag
    • 5
  1. 1.Balaji Institute of Pharmaceutical SciencesNarsampetIndia
  2. 2.Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)MontpellierFrance
  3. 3.Sri Shivani College of PharmacyWarangalIndia
  4. 4.Cental Drugs Standards Control OrganizationMumbaiIndia
  5. 5.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations