Advertisement

Diversity and Taxonomy of Methanogens

  • Zhe Lyu
  • Yuchen Liu
Living reference work entry

Latest version View entry history

Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methanogens are strictly anaerobic, methane-producing archaea. All characterized members belong to the phylum Euryarchaeota, but methanogenesis pathway is also predicted to be present in the newly proposed phyla Bathyarchaeota and Verstraetearchaeota. This indicates that the diversity of methanogens may be larger than previously excepted. Although methanogens share a set of physiological characteristics, they are phylogenetically very diverse. The current taxonomy classifies methanogens into seven well established orders: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales, Methanocellales, and Methanomassiliicoccales. This taxonomy is supported by 16S rRNA gene sequences as well as a number of physiological properties, e.g. substrates for methanogenesis, nutritional requirements, morphologies, and structures of cell envelopes. Methanogens are abundant in a wide variety of anaerobic environments where they catalyze the terminal step in the anaerobic food chain by converting methanogenic substrates to methane. The complexity of methanogenesis pathways suggests an ancient monophyletic origin of methanogens, a hypothesis that is supported by phylogenetic analyses based upon DNA sequences.

References

  1. Anderson I et al (2009) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS One 4(6):e5797PubMedPubMedCentralCrossRefGoogle Scholar
  2. Angel R et al (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6(5):e20453PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angel R et al (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6(4):847–862PubMedCrossRefGoogle Scholar
  4. Balch WE et al (1979) Methanogens: reevaluation of a unique biological group. Microbiol Mol Biol Rev 43(2):260–296Google Scholar
  5. Bapteste E et al (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1(5):353–363PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belay N et al (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54(2):600–603PubMedPubMedCentralGoogle Scholar
  7. Bellack A et al (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Int J Syst Evol Microbiol 61(6):1239–1245PubMedCrossRefGoogle Scholar
  8. Belyaev SS et al (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45(2):691–697PubMedPubMedCentralGoogle Scholar
  9. Biavati B et al (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54(3):768–771PubMedPubMedCentralGoogle Scholar
  10. Bleicher K et al (1989) Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol Lett 59(3):307–312CrossRefGoogle Scholar
  11. Bonin A, Boone D (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 231–243CrossRefGoogle Scholar
  12. Boone DR (1987) Request for an opinion: replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol 37(2):172–173CrossRefGoogle Scholar
  13. Boone DR et al (1993a) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Syst Bacteriol 43(3):430–437CrossRefGoogle Scholar
  14. Boone DR et al (1993b) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hall, New York, pp 35–80CrossRefGoogle Scholar
  15. Boone DR et al (2001a) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanobacteriales Bergy’s manual of systematic bacteriology, vol 1. Springer, New York, pp 213–235CrossRefGoogle Scholar
  16. Boone DR et al (2001b) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanomicrobiales Bergy’s manual of systematic bacteriology, vol 1. Springer, New York, pp 246–267Google Scholar
  17. Boone DR et al (2001c) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanosarcinales Bergy’s manual of systematic bacteriology, vol 1. Springer, New York, pp 268–294Google Scholar
  18. Borrel G et al (2012a) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194(24):6944–6945PubMedPubMedCentralCrossRefGoogle Scholar
  19. Borrel G et al (2012b) Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62(7):1625–1629PubMedCrossRefGoogle Scholar
  20. Borrel G et al (2013) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1(4): e00453-13CrossRefGoogle Scholar
  21. Borrel G et al (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brauer SL et al (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442(7099):192–194PubMedCrossRefGoogle Scholar
  23. Bräuer SL et al (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61(1):45–52PubMedCrossRefGoogle Scholar
  24. Brochier C et al (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 5(3):R17PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brugere JF et al (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5(1):5–10PubMedCrossRefGoogle Scholar
  26. Bruggen JJA et al (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. Arch Microbiol 144(4):367–374CrossRefGoogle Scholar
  27. Brusa T et al (1987) The presence of methanobacteria in human subgingival plaque. J Clin Periodontol 14(8):470–471PubMedCrossRefGoogle Scholar
  28. Bryant MP, Boone DR (1987) Emended description of strain MST(DSM 800T), the type strain of Methanosarcina barkeri. Int J Syst Bacteriol 37(2):169–170CrossRefGoogle Scholar
  29. Burggraf S et al (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269PubMedCrossRefGoogle Scholar
  30. Burggraf S et al (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst Appl Microbiol 14:346–351PubMedCrossRefGoogle Scholar
  31. Cadillo-Quiroz H et al (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74(7):2059–2068PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cadillo-Quiroz H et al (2009) Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59(5):928–935PubMedCrossRefGoogle Scholar
  33. Cadillo-Quiroz H et al (2010) Diversity and community structure of archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog. Microb Ecol 59(4):757–767PubMedCrossRefGoogle Scholar
  34. Cadillo-Quiroz H et al (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64(5):1473–1480PubMedCrossRefGoogle Scholar
  35. Cha I-T et al (2013) Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie Van Leeuwenhoek 104(6):1005–1012PubMedCrossRefGoogle Scholar
  36. Chen S-C et al (2015) Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int J Syst Evol Microbiol 65(7):2141–2147PubMedCrossRefGoogle Scholar
  37. Cheng L et al (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int J Syst Evol Microbiol 57:2964–2969.CrossRefGoogle Scholar
  38. Cheng L et al (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285(1):65–71PubMedCrossRefGoogle Scholar
  39. Cheng L et al (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77(15):5212–5219PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chin KJ et al (2004) Archaeal community structure and pathway of methane formation on rice roots. Microb Ecol 47(1):59–67PubMedCrossRefGoogle Scholar
  41. Chong S et al (2002) Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie Van Leeuwenhoek 81(1):263–270PubMedCrossRefGoogle Scholar
  42. Clementino M et al (2008) Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles 12(4):595–604PubMedCrossRefGoogle Scholar
  43. Conrad R et al (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17(3):262–267PubMedCrossRefGoogle Scholar
  44. Conrad R et al (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chang Biol 14(3):657–669CrossRefGoogle Scholar
  45. Cuzin N et al (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51(2):489–493PubMedCrossRefGoogle Scholar
  46. Davidova IA et al (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Antonie Van Leeuwenhoek 71(4):313–318PubMedCrossRefGoogle Scholar
  47. Dianou D et al (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int J Syst Evol Microbiol 51(5):1663–1669PubMedCrossRefGoogle Scholar
  48. Diaz E et al (2003) Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48(6):57–64PubMedCrossRefGoogle Scholar
  49. Dighe A et al (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4(1):20PubMedPubMedCentralCrossRefGoogle Scholar
  50. Doerfert SN et al (2009) Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59(5):1064–1069PubMedCrossRefGoogle Scholar
  51. Dridi B et al (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(8):1902–1907PubMedCrossRefGoogle Scholar
  52. Earl J et al (2003) Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequences. Microb Ecol 46(2):270–278PubMedCrossRefGoogle Scholar
  53. Elberson MA, Sowers KR (1997) Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Int J Syst Bacteriol 47(4):1258–1261PubMedCrossRefGoogle Scholar
  54. Embley TM et al (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138(7):1479–1487PubMedCrossRefGoogle Scholar
  55. Erkel C et al (2006) Genome of Rice Cluster I archaea – the key methane producers in the rice rhizosphere. Science 313(5785):370–372PubMedCrossRefGoogle Scholar
  56. Evans PN et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259):434–438PubMedCrossRefGoogle Scholar
  57. Ferrari A et al (1994) Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr Microbiol 29(1):7–12CrossRefGoogle Scholar
  58. Ferry JG et al (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24(4):465–469CrossRefGoogle Scholar
  59. Franzmann PD et al (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15(4):573–581CrossRefGoogle Scholar
  60. Franzmann PD et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47(4):1068–1072PubMedCrossRefPubMedCentralGoogle Scholar
  61. Frimmer U, Widdel F (1989) Oxidation of ethanol by methanogenic bacteria. Arch Microbiol 152(5):479–483CrossRefGoogle Scholar
  62. Gagen EJ et al (2013) Novel Cultivation-Based Approach To Understanding the Miscellaneous Crenarchaeotic Group (MCG) Archaea from Sedimentary Ecosystems. Appl Environ Microbiol 79(20):6400–6406PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gan Y et al (2012) Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions. Appl Environ Microbiol 78(14):4923–4932PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ganzert L et al (2014) Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64(10):3478–3484PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gao B, Gupta R (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8(1):86PubMedPubMedCentralCrossRefGoogle Scholar
  66. Garcia JL et al (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 208–230CrossRefGoogle Scholar
  67. Göker M et al (2014) Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. Stand Genomic Sci 9(3):1076–1088PubMedPubMedCentralCrossRefGoogle Scholar
  68. Goris J et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc B 361(1470):1007–1022CrossRefGoogle Scholar
  70. Hafenbradl D et al (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst Appl Microbiol 16(2):165–169CrossRefGoogle Scholar
  71. Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, p 2Google Scholar
  72. Hendrickson EL et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186(20):6956–6969PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hofmann K et al (2016) Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol Ecol 92(2): 1-11PubMedCrossRefGoogle Scholar
  74. Huber H et al (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132(1):47–50CrossRefGoogle Scholar
  75. Iino T et al (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60(11):2563–2566PubMedCrossRefGoogle Scholar
  76. Iino T et al (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28(2):244–250PubMedPubMedCentralCrossRefGoogle Scholar
  77. Imachi H et al (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58(1):294–301PubMedCrossRefGoogle Scholar
  78. Imachi H et al (2009) Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. Int J Syst Evol Microbiol 59(4):800–805PubMedCrossRefGoogle Scholar
  79. Inagaki F et al (2003) Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk. Appl Environ Microbiol 69(12):7224–7235PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jeanthon C et al (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48(3):913–919PubMedCrossRefPubMedCentralGoogle Scholar
  81. Jeanthon C et al (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49(2):583–589PubMedCrossRefPubMedCentralGoogle Scholar
  82. Jetten MSM et al (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Lett 88(3–4):181–197CrossRefGoogle Scholar
  83. Jiang B et al (2005) Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6):2465–2470PubMedCrossRefPubMedCentralGoogle Scholar
  84. Jones WJ et al (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136(4):254–261CrossRefGoogle Scholar
  85. Jones WJ et al (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135(2):91–97CrossRefGoogle Scholar
  86. Joulian C et al (2000) Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50(2):525–528PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kadam PC, Boone DR (1995) Physiological characterization and emended description of Methanolobus vulcani. Int J Syst Bacteriol 45(2):400–402CrossRefGoogle Scholar
  88. Kadam PC et al (1994) Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 44(4):603–607CrossRefGoogle Scholar
  89. Kamagata Y, Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41(2):191–196CrossRefGoogle Scholar
  90. Katayama T et al (2014) Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. Int J Syst Evol Microbiol 64(6):2089–2093PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kemnitz D et al (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6(5):449–461PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kendall MM, Boone DR (2006) The order Methanosarcinales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 244–256CrossRefGoogle Scholar
  93. Kendall MM et al (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56(7):1525–1529PubMedCrossRefPubMedCentralGoogle Scholar
  94. Kern T et al (2015) Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol 65(6):1975–1980PubMedCrossRefPubMedCentralGoogle Scholar
  95. Keswani J, Whitman W (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51(2):667–678PubMedCrossRefPubMedCentralGoogle Scholar
  96. Keswani J et al (1996) Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods. Int J Syst Bacteriol 46(3):727–735PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kitamura K et al (2011) Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 61(6):1246–1252PubMedCrossRefPubMedCentralGoogle Scholar
  98. Koenig H (1984) Isolation and characterization of Methanobacterium uliginosum sp.nov. from a marshy soil. Can J Microbiol 30(12):1477–1481CrossRefGoogle Scholar
  99. Konig K, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralblatt Bakteriol Parasitenkd Infekt Hyg Abt 1 Orig C3:478–490Google Scholar
  100. Kotelnikova SV et al (1993) Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov.: thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. Syst Appl Microbiol 16(3):427–435CrossRefGoogle Scholar
  101. Kotelnikova S et al (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48(2):357–367PubMedCrossRefGoogle Scholar
  102. Krivushin KV et al (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60(2):455–459PubMedCrossRefGoogle Scholar
  103. Krüger M et al (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51(3):323–331PubMedCrossRefGoogle Scholar
  104. Kudo Y et al (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 22(1):39–48CrossRefGoogle Scholar
  105. Kurr M et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156(4):239–247CrossRefGoogle Scholar
  106. Kushwaha SC et al (1981) Novel complex polar lipids from the methanogenic archaebacterium Methanospirillum hungatei. Science 211(4487):1163–1164PubMedCrossRefGoogle Scholar
  107. L’Haridon S et al (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53(6):1931–1935PubMedCrossRefGoogle Scholar
  108. L’Haridon S et al (2014) Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N,N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int J Syst Evol Microbiol 64(6):1978–1983PubMedCrossRefGoogle Scholar
  109. Lai MC, Chen SC (2001) Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 51(5):1873–1880PubMedCrossRefGoogle Scholar
  110. Lai MC et al (2002) Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int J Syst Evol Microbiol 52(5):1799–1806PubMedGoogle Scholar
  111. Lai M-C et al (2004) Methanocalculus chunghsingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int J Syst Evol Microbiol 54(1):183–189PubMedCrossRefGoogle Scholar
  112. Lauerer G et al (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8(1–2):100–105CrossRefGoogle Scholar
  113. Laurinavichyus KS et al (1988) New species of thermophilic methane-producing bacteria Methanobacterium thermophilum. Mikrobiologiya 57(6):1035–1041Google Scholar
  114. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62(10):3620–3631PubMedPubMedCentralGoogle Scholar
  115. Leadbetter JR et al (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169(4):287–292PubMedCrossRefGoogle Scholar
  116. Lee J-H et al (2013) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63(11):4196–4201PubMedCrossRefGoogle Scholar
  117. Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169(5):397–403PubMedCrossRefGoogle Scholar
  118. Liu Y (2010a) Methanobacteriales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 559–571CrossRefGoogle Scholar
  119. Liu Y (2010b) Methanococcales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 573–581CrossRefGoogle Scholar
  120. Liu Y (2010c) Methanomicrobiales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 583–593CrossRefGoogle Scholar
  121. Liu Y (2010d) Methanosarcinales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 595–604CrossRefGoogle Scholar
  122. Liu Y (2010e) Taxonomy of methanogens. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 547–558CrossRefGoogle Scholar
  123. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125(Incredible Anaerobes From Physiology to Genomics to Fuels):171–189PubMedCrossRefGoogle Scholar
  124. Liu Y et al (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40(2):111–116CrossRefGoogle Scholar
  125. Liu W-T et al (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36(7):1767–1775PubMedCrossRefGoogle Scholar
  126. Liu PF et al (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77(11):3884–3887PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lomans BP et al (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65(8):3641–3650PubMedPubMedCentralGoogle Scholar
  128. Lu YH, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309(5737):1088–1090PubMedCrossRefGoogle Scholar
  129. Lü Z, Lu Y (2012a) Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from chinese rice field soil. J Bacteriol 194(9):2398–2399PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lü Z, Lu Y (2012b) Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from chinese rice field soil. PLoS One 7(4):e35279PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lu Y et al (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7(3):326–336PubMedCrossRefGoogle Scholar
  132. Lueders T et al (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3(3):194–204PubMedCrossRefGoogle Scholar
  133. Lueders T et al (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70(10):5778–5786PubMedPubMedCentralCrossRefGoogle Scholar
  134. Luton PE et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148(11):3521–3530PubMedCrossRefGoogle Scholar
  135. Lyimo TJ et al (2000) Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50(1):171–178PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lyu Z, Lu Y (2015) Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep 7(3):526–537PubMedCrossRefGoogle Scholar
  137. Lyu Z, Lu Y (2017) Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J 12(2):411–423PubMedCrossRefGoogle Scholar
  138. Ma K et al (2005) Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55(1):325–329PubMedCrossRefGoogle Scholar
  139. Ma K et al (2006) Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Microbiol 56(1):127–131PubMedCrossRefGoogle Scholar
  140. Mah RA, Kuhn DA (1984) Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species: request for an opinion. Int J Syst Bacteriol 34(2):263–265CrossRefGoogle Scholar
  141. Markowitz VM et al (2007a) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36(Database):D534–D538PubMedPubMedCentralCrossRefGoogle Scholar
  142. Markowitz VM et al (2007b) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36(Database):D528–D533PubMedPubMedCentralCrossRefGoogle Scholar
  143. Markowitz VM et al (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25(17):2271–2278PubMedCrossRefGoogle Scholar
  144. Martinson GO et al (2010) Methane emissions from tank bromeliads in neotropical forests. Nat Geosci 3(11):766–769CrossRefGoogle Scholar
  145. Mathrani IM et al (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38(2):139–142PubMedCrossRefGoogle Scholar
  146. Mayumi D et al (2016) Methane production from coal by a single methanogen. Science 354(6309):222–225PubMedCrossRefGoogle Scholar
  147. Mikucki JA et al (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69(6):3311–3316PubMedPubMedCentralCrossRefGoogle Scholar
  148. Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52(3):819–822PubMedGoogle Scholar
  149. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141(2):116–122PubMedCrossRefGoogle Scholar
  150. Mochimaru H et al (2007) Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles 11(3):453–461PubMedCrossRefGoogle Scholar
  151. Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61(1):138–143PubMedCrossRefGoogle Scholar
  152. Mori K et al (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50(5):1723–1729PubMedCrossRefGoogle Scholar
  153. Nakamura K et al (2013) Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63(2):715–722PubMedCrossRefGoogle Scholar
  154. Nazina T et al (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology 75(1):55–65CrossRefGoogle Scholar
  155. Nicholson M et al (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis:identification of uncultured methanogens. Microb Ecol 54(1):141–150PubMedCrossRefGoogle Scholar
  156. Nilsen R, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62(2):728–731PubMedPubMedCentralGoogle Scholar
  157. Nobu MK et al (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10(10):2478–2487PubMedPubMedCentralCrossRefGoogle Scholar
  158. Nolling J et al (1996) Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46(4):1170–1173PubMedCrossRefGoogle Scholar
  159. Ohkuma M et al (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134(1):45–50PubMedCrossRefGoogle Scholar
  160. Ollivier BM, Mah RA, Garcia JL, Boone DR (1986) Isolation and characterization of Methanogenium bourgense sp. nov. Int J Syst Bacteriol 36(2):297–301CrossRefGoogle Scholar
  161. Ollivier B et al (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147(1):51–56PubMedCrossRefGoogle Scholar
  162. Ollivier B et al (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48(3):821–828PubMedCrossRefGoogle Scholar
  163. Oremland RS, Boone DR (1994) Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 44(3):573–575CrossRefGoogle Scholar
  164. Orphan VJ et al (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711PubMedPubMedCentralCrossRefGoogle Scholar
  165. Parshina SN et al (2014) Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. Int J Syst Evol Microbiol 64(1):180–186PubMedCrossRefGoogle Scholar
  166. Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40(1):79–82CrossRefGoogle Scholar
  167. Patel GB et al (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40(1):12–18CrossRefGoogle Scholar
  168. Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38(1):122–123CrossRefGoogle Scholar
  169. Paynter MJB, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95(5):1943–1951PubMedPubMedCentralGoogle Scholar
  170. Peng J et al (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74(9):2894–2901PubMedPubMedCentralCrossRefGoogle Scholar
  171. Petitjean C et al (2015) Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota. Genome Biol Evol 7(1):191–204CrossRefGoogle Scholar
  172. Poulsen M et al (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428PubMedCrossRefGoogle Scholar
  173. Price MN (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5(3):e9490.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Purdy KJ et al (2002) Comparison of the molecular diversity of the methanogenic community at the brackish and marine ends of a UK estuary. FEMS Microbiol Ecol 39(1):17–21PubMedCrossRefGoogle Scholar
  175. Rea S et al (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(3):450–456PubMedCrossRefPubMedCentralGoogle Scholar
  176. Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32(4):430–436CrossRefGoogle Scholar
  177. Rivard CJ et al (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46(2):484–490PubMedPubMedCentralGoogle Scholar
  178. Rivera MC, Lake JA (1996) The phylogeny of Methanopyrus kandleri. Int J Syst Bacteriol 46(1):348–351PubMedCrossRefPubMedCentralGoogle Scholar
  179. Romesser JA et al (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121(2):147–153CrossRefGoogle Scholar
  180. Rui J et al (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77(2):264–273PubMedCrossRefPubMedCentralGoogle Scholar
  181. Sakai S et al (2008) Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936PubMedCrossRefGoogle Scholar
  182. Sakai S et al (2009) Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 75(14):4892–4896PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sakai S et al (2010) Methanocella arvoryzae sp nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 60:2918–2923PubMedCrossRefPubMedCentralGoogle Scholar
  184. Sakai S et al (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6(7):e22898PubMedPubMedCentralCrossRefGoogle Scholar
  185. Sakai S et al (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62(6):1389–1395PubMedCrossRefPubMedCentralGoogle Scholar
  186. Savant DV et al (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52(4):1081–1087PubMedPubMedCentralGoogle Scholar
  187. Schirmack J et al (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64(2):522–527PubMedCrossRefPubMedCentralGoogle Scholar
  188. Schönheit P et al (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127(1):59–65CrossRefGoogle Scholar
  189. Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821PubMedCrossRefPubMedCentralGoogle Scholar
  190. Shcherbakova V et al (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61(1):144–147PubMedCrossRefPubMedCentralGoogle Scholar
  191. Shieh J et al (1988) Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol 170(9):4091–4096PubMedPubMedCentralCrossRefGoogle Scholar
  192. Shimizu S et al (2011) Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. Int J Syst Evol Microbiol 61(10):2503–2507PubMedCrossRefPubMedCentralGoogle Scholar
  193. Shimizu S et al (2013) Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. Int J Syst Evol Microbiol 63(11):4320–4323PubMedCrossRefPubMedCentralGoogle Scholar
  194. Shimizu S et al (2015) Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J Syst Evol Microbiol 65(4):1167–1171PubMedCrossRefPubMedCentralGoogle Scholar
  195. Shlimon AG et al (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54(3):759–763PubMedCrossRefGoogle Scholar
  196. Simankova MV et al (2001) Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24(3):362–367PubMedCrossRefGoogle Scholar
  197. Singh N et al (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55(6):2531–2538PubMedCrossRefGoogle Scholar
  198. Sizova MV et al (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45(3):301–315PubMedCrossRefGoogle Scholar
  199. Slesarev AI et al (1994) Purification and characterization of DNA topoisomerase V. An enzyme from the hyperthermophilic prokaryote Methanopyrus kandleri that resembles eukaryotic topoisomerase I. J Biol Chem 269(5):3295–3303PubMedGoogle Scholar
  200. Slesarev AI et al (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci U S A 99(7):4644–4649PubMedPubMedCentralCrossRefGoogle Scholar
  201. Smith PH, Hungate RE (1958) Isolation and characterization of Methanobacterium ruminantium N. SP. J Bacteriol 75(6):713–718PubMedPubMedCentralGoogle Scholar
  202. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155PubMedCrossRefGoogle Scholar
  203. Sorokin DY et al (2015) Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. Int J Syst Evol Microbiol 65(10):3739–3745PubMedCrossRefGoogle Scholar
  204. Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45(2):684–690PubMedPubMedCentralGoogle Scholar
  205. Sowers KR et al (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47(5):971–978PubMedPubMedCentralGoogle Scholar
  206. Sprenger WW et al (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50(6):1989–1999PubMedCrossRefGoogle Scholar
  207. Springer E et al (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45(3):554–559PubMedCrossRefGoogle Scholar
  208. Sprott GD, McKellar RC (1980) Composition and properties of the cell wall of Methanospirillum hungatii. Can J Microbiol 26(2):115–120PubMedCrossRefGoogle Scholar
  209. Sprott GD et al (1983) Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. J Biol Chem 258(6):4026–4031PubMedGoogle Scholar
  210. Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(3):1043–1047PubMedGoogle Scholar
  211. Stadtman TC, Barker HA (1951) Studies on the methane fermentation X.: a new formate-decomposing bacterium, Methanococcus vannielii. J Bacteriol 62(3):269–280PubMedPubMedCentralGoogle Scholar
  212. Stetter KO et al (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Mikrobiol HYG, I ABT C 2(2):166–178Google Scholar
  213. Stewart LC et al (2015) Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65(4):1280–1283PubMedCrossRefGoogle Scholar
  214. Takai K et al (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52(4):1089–1095PubMedGoogle Scholar
  215. Takai K et al (2004) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54(4):1095–1100PubMedCrossRefGoogle Scholar
  216. Tian J et al (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60(9):2165–2169PubMedCrossRefGoogle Scholar
  217. Vanwonterghem I et al (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170PubMedCrossRefGoogle Scholar
  218. Ver Eecke HC et al (2013) Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions. Environ Microbiol Rep 5(5):665–671Google Scholar
  219. Vetriani C et al (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65(10):4375–4384Google Scholar
  220. von Klein D et al (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6(2):103–110CrossRefGoogle Scholar
  221. Wagner D et al (2013) Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int J Syst Evol Microbiol 63(8):2986–2991PubMedCrossRefGoogle Scholar
  222. Wang S et al (2009) A new positive/negative selection scheme for precise BAC recombineering. Mol Biotechnol 42(1):110–116PubMedPubMedCentralCrossRefGoogle Scholar
  223. Wasserfallen A et al (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50(1):43–53PubMedCrossRefGoogle Scholar
  224. Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  225. Weiss A et al (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81(1):163–173PubMedCrossRefGoogle Scholar
  226. Weng C-Y et al (2015) Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int J Syst Evol Microbiol 65(3):1044–1049PubMedCrossRefGoogle Scholar
  227. Whitman WB, Jeanthon C (2006) Methanococcales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 257–273CrossRefGoogle Scholar
  228. Whitman WB et al (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149(3):852–863PubMedPubMedCentralGoogle Scholar
  229. Whitman WB et al (2001a) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanococcales. Bergy’s manual of systematic bacteriology, vol 1. Springer, New York, pp 236–246Google Scholar
  230. Whitman WB et al (2001b) Taxonomy of methanogenic archaea. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s mannual of systematic bacteriology. Springer, New York, p 1Google Scholar
  231. Whitman WB et al (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 165–207CrossRefGoogle Scholar
  232. Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51(5):1056–1062PubMedPubMedCentralGoogle Scholar
  233. Widdel F et al (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150(5):477–481CrossRefGoogle Scholar
  234. Wildgruber G et al (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132(1):31–36CrossRefGoogle Scholar
  235. Wilharm T et al (1991) DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilusvp to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int J Syst Bacteriol 41(4):558–562CrossRefGoogle Scholar
  236. Winter J et al (1984) Methanobacterium wolfei, sp.nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5(4):457–466CrossRefGoogle Scholar
  237. Worakit S et al (1986) Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36(3):380–382CrossRefGoogle Scholar
  238. Wright A-DG et al (2004) Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol 70(3):1263–1270PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wu S-Y, Lai M-C (2011) Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Appl Environ Microbiol 77(3):830–838PubMedCrossRefGoogle Scholar
  240. Wu S-Y et al (2005) Methanofollis formosanus sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 55(2):837–842PubMedCrossRefGoogle Scholar
  241. Wu XL et al (2006) Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol 8(3):394–404PubMedCrossRefGoogle Scholar
  242. Zabel HP et al (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137(4):308–315CrossRefGoogle Scholar
  243. Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp.nov. An obligate anaerobe isolated from wetwood of living trees. Antonie Van Leeuwenhoek 41(4):543–552PubMedCrossRefGoogle Scholar
  244. Zeikus JG, Wolee RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109(2):707–713PubMedPubMedCentralGoogle Scholar
  245. Zellner G et al (1987) Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147(1):13–20CrossRefGoogle Scholar
  246. Zellner G et al (1988) Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch Microbiol 151(1):1–9CrossRefGoogle Scholar
  247. Zellner G et al (1989) Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151(5):381–390PubMedCrossRefGoogle Scholar
  248. Zellner G et al (1990) Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153(3):287–293CrossRefGoogle Scholar
  249. Zellner G et al (1998) Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48(4):1111–1117PubMedCrossRefGoogle Scholar
  250. Zhao H et al (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150(2):178–183CrossRefGoogle Scholar
  251. Zhao Y et al (1989) Isolation and characterization of Methanocorpusculum labreanum sp. nov. from the LaBrea Tar Pits. Int J Syst Bacteriol 39(1):10–13CrossRefGoogle Scholar
  252. Zhilina TN, Zavarzin GA (1987a) Methanohalobium evestigatus, n. gen., n. sp., the extremely halophilic methanogenic Archaebacterium. Dokl Akad Nauk SSSR 293:464–468Google Scholar
  253. Zhilina TN, Zavarzin GA (1987b) Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int J Syst Bacteriol 37(3):281–283CrossRefGoogle Scholar
  254. Zhilina TN et al (2013) Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology 82(6):698–706CrossRefGoogle Scholar
  255. Zhu J et al (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61(12):2974–2978PubMedCrossRefGoogle Scholar
  256. Zinder SH et al (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35(4):522–523CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations